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Abstract. In this work, we extend Achi Brandt’s notion of textbook multigrid effi-

ciency (TME) to massively parallel algorithms. Using a finite element based geomet-
ric multigrid implementation, we recall the classical view on TME with experiments

for scalar linear equations with constant and varying coefficients as well as linear
systems with saddle-point structure. To extend the idea of TME to the parallel set-

ting, we give a new characterization of a work unit (WU) in an architecture-aware

fashion by taking into account performance modeling techniques. We illustrate our
newly introduced parallel TME measure by large-scale computations, solving prob-

lems with up to 200 billion unknowns on a TOP-10 supercomputer.

AMS subject classifications: 65N55, 68W10

Key words: Multigrid, parallel computing, textbook efficiency, finite element method.

1. Introduction

Asymptotic complexity bounds for iterative solvers that contain unspecified con-

stants provide only heuristic criteria to design efficient solvers [10, Chapter 14]. This

simple observation motivated Brandt to coin the term textbook multigrid efficiency (TME)

to characterize truly fast multigrid algorithms. In [9] he writes

Textbook multigrid efficiency means solving a discrete PDE problem with a

computational effort that is only a small (less than 10) multiple of the opera-

tion count associated with the discretized equations itself.
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In the context of Brandt’s TME, computational efficiency is evaluated in terms of the

number of floating point operations (FLOPS) that are needed to obtain a solution with a

certain accuracy. To achieve TME, the number of FLOPS to solve the discretized system

must be a small multiple of the FLOPS needed for an application of the discretized

operator. Consequently, the elementary work unit (WU) is defined as the cost of one

such operator application.

Unfortunately on modern architectures, the TME notion falls short in predicting

the performance of an iterative solver since it does not take into account the parallel

efficiency and an architecture-aware algorithm design. Nowadays even multigrid algo-

rithms that are TME efficient are not necessarily fast. Thus there is a need to extend the

TME metric so that it becomes possible to predict the time to solution also on parallel

computer architectures.

The main contribution of our work lies in adapting the TME paradigm to the issues

originating from the ongoing transition to massively parallel multicore systems with

complex communication networks and with a hierarchical memory architecture. On

such modern machines, the simple count of floating point operations of an algorithm

correlates poorly with actual computational cost. In particular, energy consumption

emerges increasingly as the fundamental bottleneck and as the limiting resource of

large scale computing. Since the use of energy is predominantly caused by data move-

ment, the computational cost is strongly affected by moving data. Here data movement

includes parallel communication in a large supercomputer cluster, the communication

between chips and memory modules in a computer node, and also the access of each

processing core to the register banks or cache memory within the chip itself.

In this paper, we focus on linear finite elements (FE) on semi-structured hierar-

chical simplicial meshes. These restrictions yield the advantage that the complex and

computationally expensive logistics of manipulating unstructured grids can be avoided

on the finer levels of the multigrid hierarchy. Our implementation is based on the

Hierarchical Hybrid Grid (HHG) framework [3,6], a geometric multigrid library imple-

mented in C++ and using the MPI message passing system and hybrid programming.

Using HHG, we recently demonstrated that it is possible to solve linear elliptic prob-

lems with more than 1012 unknowns on current TOP 10 supercomputers, using several

100 000 processor cores [18,19]. The efficiency of the framework relies on the system-

atic performance- and architecture- aware co-design of the multigrid algorithm and

its implementation. In particular, the matrix-free design avoids the explicit storage of

the stiffness matrix and thus circumvents the severe efficiency penalty in terms of data

storage and redundant data transport. In the course of our work, we also demonstrate

an enhanced method to deal with variable coefficients in our stencil-based framework.

For illustration, we complement our considerations with large-scale computations.

Before we proceed, let us discuss some related work. Due to the extensive amount

of literature dealing with multigrid methods, we must restrict ourselves to recent con-

tributions on parallel realizations for high-end distributed memory architectures. For

a further discussion of parallelization techniques for multigrid methods, we refer to

[13, 24, 35]. To the authors’ best knowledge, the first parallel multigrid solvers capa-
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