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Abstract. This paper presents a method for solving the linear semi-implicit im-
mersed boundary equations which avoids the severe time step restriction presented

by explicit-time methods. The Lagrangian variables are eliminated via a Schur com-

plement to form a purely Eulerian saddle point system, which is preconditioned by
a projection operator and then solved by a Krylov subspace method. From the view-

point of projection methods, we derive an ideal preconditioner for the saddle point

problem and compare the efficiency of a number of simpler preconditioners that
approximate this perfect one. For low Reynolds number and high stiffness, one par-

ticular projection preconditioner yields an efficiency improvement of the explicit IB
method by a factor around thirty. Substantial speed-ups over explicit-time method

are achieved for Reynolds number below 100. This speedup increases as the Eulerian

grid size and/or the Reynolds number are further reduced.
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1. Introduction

The Immersed Boundary (IB) method introduced by Peskin [19, 20] has been a

popular approach for simulating fluid-structure interactions. Physical variables for the

fluid are discretized on an Eulerian grid while those for the immersed boundary are dis-

cretized on a Lagrangian grid. The fluid satisfies the no-slip condition on the immersed
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boundary, which means that the Lagrangian grid points move at a velocity interpo-

lated from the Eulerian grid. Deformations of the immersed boundary generate elastic

forces which are transmitted to the fluid through a forcing term added to the governing

equations of fluid dynamics. In this manner the IB method provides much flexibility in

modeling the coupling between the Eulerian and Lagrangian variables, since explicitly

enforcing boundary conditions at the fluid-structure interface is avoided.

The popularity of the IB method is partly due to its simplicity. In a typical explicit-

time method, the Eulerian velocity and pressure fields are updated for a fixed configu-

ration of the immersed structure, and then the position of the Lagrangian structure is

updated from the newly computed velocity field. This approach effectively decouples

the Eulerian and Lagrangian equations, and solvers are needed only for the Eulerian

equations (i.e., the incompressible Stokes or Navier-Stokes equations), for which fast

Cartesian grid solution methods are available. The implementation is straightforward

since it only entails augmenting one’s favorite fluid solver with the IB forcing term.

Nonetheless, when an elastic boundary becomes stiff, explicit-time IB methods suffer

from either instability or restrictively small time steps.

To remedy the severe time step restriction of explicit IB methods, a number of

implicit and semi-implicit schemes have been developed. However, their implemen-

tation is much more involved and is a subject of ongoing research; see for exam-

ple [3, 4, 11, 13, 15–18, 22, 24] and references therein. These methods are centered

at answering two essential questions:

(A) How does stiffness affect the stability of the numerical solver?

(B) How to efficiently solve the discretized equations that are highly stiff?

Clearly these two questions are closely related. It had been commonly believed that

only fully implicit discretizations could produce an unconditionally stable IB method

until the work of Newren et. al. [17]. They showed that semi-implicit versions of back-

ward Euler and Crank-Nicolson schemes can be made stable so long as the spreading

and interpolation operators are evaluated at the same time instant and the same spa-

tial location. When this is satisfied, the total energy of the numerical system does not

increase over time even if the evaluation of the spreading and interpolation operators

are lagged in time. This conclusion not only answers question (A), but also partially

answers question (B), since the lagged evaluation of the spreading and interpolation

operators opens up exciting possibilities of unconditionally stable discretizations via

linear systems.

Many implicit methods use a Schur complement approach to reduce the coupled

Eulerian-Lagrangian equations to purely Lagrangian equations [3, 4, 16]. These meth-

ods achieve a substantial speed-up over explicit methods when there are relatively few

Lagrangian mesh nodes. In addition, some methods require that the boundaries be

smooth, closed curves [13]. An open question is whether there exist robust, general-

purpose implicit methods that are more efficient than explicit methods, or whether

specialized methods must be developed for specific problems.


