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Abstract. In this paper, a finite element method is proposed to investigate multiple so-

lutions of the Navier-Stokes equations for an unsteady, laminar, incompressible flow in

a porous expanding channel. Dual or triple solutions for the fixed values of the wall suc-

tion Reynolds number R and the expansion ratio α are obtained numerically. The com-

puted multiple solutions for the symmetric flow are validated by comparing them with

approximate analytic solutions obtained by the similarity transformation and homo-

topy analysis method. Unlike previous works, our method deals with the Navier-Stokes

equations directly and thus has no similarity and other restrictions as in previous works.

Finally we use the method to study multiple solutions for three cases of the asymmetric

flow (which has not been studied before using the similarity-type techniques).
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1. Introduction

In recent decades, there are growing interests in studying the laminar flow in channels

or pipes with porous and expanding or contracting walls due to their relevance to a number

of biological and engineering models, such as the transport of biological fluids through

contracting or expanding vessels, the synchronous pulsation of porous diaphragms, the

modeling of air circulation in the respiratory system and the model of the regression of the

burning surface in solid rocket motors. Furthermore, the classical Berman’s problem can

be regarded as a special case of this model when the walls are stationary.

In order to study the transpiration cooling, Berman [1] established the model to de-

scribe the diffusion of fluids at a porous channel. He regarded Reynolds number as a small
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parameter and obtained the asymptotic solution for the first time. Since then a large num-

ber of analytic and numerical investigations for the problem have been done. In general,

most of the researchers reduce the Navier-Stokes equations to a boundary value problem

of a 4th-order nonlinear ordinary differential equation (ODE) through a similarity trans-

formation and then obtain its asymptotic or numerical solutions. For example, Yuan [2],

Terrill and Shrestha [3], Suryaprakashrao [4] obtained asymptotic solutions using per-

turbation method and discussed the relation between the velocity field and the Reynolds

number. In the numerical investigation of the solutions of the flow (ODE) in a stationary

channel, they use an initial value method to solve the boundary value problem. The shoot-

ing method combined with a Runge-Kutta integrator was mainly employed. Terrill [3,5,6]

may be the earliest to have numerical studies for the laminar flow of different Reynolds

number R in a porous channel and obtained one solution for a few Reynolds numbers R.

Robinson [7], Lu et al. [8] and Zaturska et al. [9] discussed the multiplicity of solution

for the flow of different R in a porous channel with stationary walls by numerically solv-

ing the nonlinear ODE. All of numerical studies for the similarity-transformed ODE model

with stationary walls have revealed that one solution exists for −12.165≤ R≤ 0 and three

solutions exist for−∞ < R<−12.165.

However, very little has been done for the multiple solutions of the flow in a porous

channel with moving walls. Majdalani and Zhou [10–13], Asghar et al. [14] and Saeed et

al. [15] discussed the flow in a deforming channel using perturbation method, Adomian

decomposition method (AMD) and homotopy analysis method respectively, but they did

not focus on the multiplicity of the solution. Dauenhauer and Majdalani [16] believed

that multiple solutions should exist for the flow in a porous channel with expanding or

contracting walls and should be influenced by both R and expansion ratio α. Recently,

Xu et al. [17] investigated the multiple solutions of the flow in a porous channel with

moving walls using the homotopy analysis method. They obtained two new profiles that

are complementary to the solutions explored by Dauenhauer and Majdalani [16].

Durlofsky and Brady [18] indicated that similarity solutions are important in helping us

understand the behavior of fluids. However, there is no assurance that these solutions rep-

resent a physically realizable flow and that these solutions are physically stable. This is the

motivation that we study the multiple solutions by solving the original governing Navier-

Stokes equations without making a similarity transformation. Furthermore, our method

based directly on the original equations may be applied to general problems without any

restriction accompanied with the similarity transformation (for example, the assumption

of constant expansion ratio is not necessary in our method).

In this paper, we shall directly solve the Navier-Stokes equations using the finite ele-

ment method, which is a very popular numerical method for partial differential equations,

especially for various fluid flow problems (see e.g., [19–21]). We aim to study the multiple

solutions for the flow in a porous channel with moving walls by employing a continuous

finite element method. The moving walls are converted to fixed walls through a simple

variable transformation. Since we deal with the time dependent governing equations di-

rectly the dynamic stability of these solutions may be justified through the solving process.

In Section 2, we introduce the model of the laminar flow in a porous channel with expand-


