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Abstract. We show that the zeros of a trigonometric polynomial of degree N with the

usual (2N + 1) terms can be calculated by computing the eigenvalues of a matrix of

dimension 2N with real-valued elements M jk. This matrix ~~M is a multiplication matrix

in the sense that, after first defining a vector ~φ whose elements are the first 2N basis

functions, ~~M ~φ = 2cos(t) ~φ. This relationship is the eigenproblem; the zeros tk are the

arccosine function of λk/2 where the λk are the eigenvalues of ~~M . We dub this the

“Fourier Division Companion Matrix”, or FDCM for short, because it is derived using

trigonometric polynomial division. We show through examples that the algorithm com-

putes both real and complex-valued roots, even double roots, to near machine precision

accuracy.
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1. Introduction

More than a century ago, Frobenius showed that the roots of a polynomial could be

found as the eigenvalues of a so-called "companion matrix" whose elements are trivial

functions of the coefficients of the polynomial in the monomial basis. Similar companion

matrices are now known to find the zeros of truncated series of Chebyshev, Legendre,

Gegenbauer, Hermite and Bernstein polynomials as reviewed in [2].

A trigonometric polynomial of degree N is a truncated Fourier series of the form

fN (t) ≡
∑N

j=0 a j cos( j t) +
∑N

j=1 b j sin( j t). It is known that such a trigonometric poly-

nomial can always be converted by the change of coordinate z = exp(i t) into an ordinary
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polynomial in z with complex-valued coefficients. The zeros can then be computed by find-

ing eigenvalues zk of the Frobenius companion matrix with complex-valued coefficients

and applying tk = −i log(zk).

In this note, we show that it is possible to obtain a companion matrix for a truncated

Fourier series directly. This provides a simple way to find the zeros of a function rep-

resented by its Fourier expansion. The determination of the maxima and minima and

inflection points of a function are also problems in rootfinding because these points are the

zeros of the first or second derivative of the function, and these derivatives can easily be

found in Fourier form by term-by-term differentiation of the Fourier expansion for f (t).

Trigonometric root finding problems arise in many applications. For example, comput-

ing the intersection of two curves is a common task in computer graphics. If one curve

is specified implicitly as the zero set (“affine variety”) of a bivariate algebraic polyno-

mial P(x , y) and the other is a closed curve, parameterized by a pair of trigonometric

polynomials, the intersection problem may be reduced to finding zeros of a trigonometric

polynomial. If the parameterized curve is specified by some functions (x(t), y(t)), then the

univariate trigonometric polynomial whose roots are needed is f (t) ≡ P(x(t), y(t)). Later,

we thus compute the intersection of an algebraic curve (a trifolium) with a parameterized

ellipse.

2. Previous work on computing the zeros of trigonometric polynomials

Three transformations have been used to convert trigonometric polynomials into alge-

braic polynomials so that the standard rootfinders for the latter can be deployed. Weidner

set z = exp(i t), which yields a polynomial with complex coefficients and maps the real

zeros in t to roots on the unit circle in z [18]. Schweikard avoided complex coefficients by

the substitutions

t = 2 arctan(s) ↔ s = tan(t/2), (2.1)

which convert a trigonometric polynomial to a rational function and then, after clearing

denominators, to a polynomial in s via the identities [16,17]

cos(t) =
1− s2

1+ s2
, sin(t) =

2s

1+ s2
. (2.2)

Lastly, one may write cos(t) = c, sin(t) = s and add the constraint Q(c, s) ≡ c2+ s2− 1= 0

which yields a system of two algebraic equations in the unknowns (c, s). This option is

very popular in robotics and yields the ECM companion matrix [4].

Other authors have applied interval arithmetic [7–9, 17] and the Durand-Kerner it-

eration for finding all roots simultaneously [1, 7–9, 13, 14]. Earlier and complementary

companion matrix studies by the author include [2–4,6].

We omit a full-scale review because we have already provided one in [2].


