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Abstract. As the generalization of the integer order partial differential equations (PDE),

the fractional order PDEs are drawing more and more attention for their applications in

fluid flow, finance and other areas. This paper presents high-order accurate Runge-Kutta

local discontinuous Galerkin (DG) methods for one- and two-dimensional fractional dif-

fusion equations containing derivatives of fractional order in space. The Caputo deriva-

tive is chosen as the representation of spatial derivative, because it may represent the

fractional derivative by an integral operator. Some numerical examples show that the

convergence orders of the proposed local Pk–DG methods are O(hk+1) both in one and

two dimensions, where Pk denotes the space of the real-valued polynomials with degree

at most k.
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1. Introduction

Fractional calculus is a natural extension of the integer order calculus [28, 30]. Re-

cently many problems in physics [2], finance [31] and hydrology [1] have been formu-

lated on fractional partial differential equations (PDE), containing derivatives of fractional

order in space, time or both. For example, anomalous diffusion is a possible mechanism

underlying plasma transport in magnetically confined plasmas, and the fractional order

space derivative operators can be used to model such transport mechanism.

In recent years the numerical solutions of the fractional PDEs have attracted a consid-

erable interest both in mathematics and in applications. An intrinsical difference between
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the behaviors of integer and fractional order derivatives is that the integer order derivatives

depend only on the local behavior of a function or solution, while the fractional derivatives

are non-local, i.e., they depend on the entire function or solution. Thus, new difficulties

and challenges appear in deriving numerical methods for this kind of equations.

The fractional derivatives of order α > 0, ∂
αu

∂ xα
, are usually represented by the Riemann-

Liouville formula [28,30]

∂ αu

∂ xα
(x , t) =

1

Γ(n−α)

∂ n

∂ xn

∫ x

a

u(ξ, t)(x − ξ)n−α−1 dξ, (1.1)

where Γ(·) is the Gamma function, x ∈ [a, b], −∞ ≤ a < b ≤ ∞, n− 1 < α < n, n ∈ Z+.

The fractional derivatives are also frequently defined by the Grünwald-Letnikov formula

∂ αu

∂ xα
(x , t) = lim

∆x→0

1

∆xα

[ x−a

∆x
]∑

ℓ=0

(−1)ℓ

�
α

ℓ

�
u(x − ℓ∆x , t), (1.2)

where [ x−a

∆x
] denotes the integer part of x−a

∆x
. If u(ξ, ·) ∈ Cn[a, x], the Riemann-Liouville

formula is equivalent to the Grünwald-Letnikov. However, the discrete approximations of

the latter present some limitations: frequently numerical approximations based on this

formula originate unstable numerical methods and henceforth in many cases a shifted

Grünwald-Letnikov formula is used; the order of accuracy of such approaches is never

higher than one.

Another way to represent the fractional derivative is by the Caputo formula

∂ αu

∂ xα
=

1

Γ(n−α)

∫ x

a

∂ nu(ξ, t)

∂ ξn
(x − ξ)n−α−1dξ. (1.3)

This formula has some advantages over the Riemann-Liouville formula. The Laplace trans-

form method is very frequently used for solving fractional differential equations, the Laplace

transform of the Riemann-Liouville derivatives leads to boundary conditions involving the

limit value of the Riemann-Liouville derivatives at the lower terminal x = a. Although

technically such problems can be solved, there is no physical interpretation. On the other

hand, the Laplace transform of the Caputo derivative imposes boundary conditions involv-

ing integer order derivatives which usually are more acceptable and physical. Another ad-

vantage is that the Caputo derivative of a constant is zero, while for the Riemann-Liouville

it’s not.

During the past decade, numerical methods of the fractional PDEs have been increas-

ingly appearing in literatures. Lynch et al. [24] studied the numerical properties of the

PDEs of fractional order α ∈ (1,2). Shen and Liu [35] gave error analysis of an explicit

finite difference approximation for the space fractional diffusion equation with insulated

ends. Chen et al. [3] proved the stability and convergence of an implicit difference approx-

imation scheme of the fractional diffusion equation describing anomalous slow diffusion

(sub-diffusion) by using a Fourier method. Liu et al. [21] discussed stability and conver-

gence of the difference methods for the space-time fractional advection-diffusion equation.


