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Abstract. In this paper, we study linear systems arising from time-space fractional

Caputo-Riesz diffusion equations with time-dependent diffusion coefficients. The coeffi-

cient matrix is a summation of a block-lower-triangular-Toeplitz matrix (temporal com-

ponent) and a block-diagonal-with-diagonal-times-Toeplitz-block matrix (spatial com-

ponent). The main aim of this paper is to propose separable preconditioners for solving

these linear systems, where a block ε-circulant preconditioner is used for the temporal

component, while a block diagonal approximation is used for the spatial variable. The

resulting preconditioner can be block-diagonalized in the temporal domain. Further-

more, the fast solvers can be employed to solve smaller linear systems in the spatial

domain. Theoretically, we show that if the diffusion coefficient (temporal-dependent

or spatial-dependent only) function is smooth enough, the singular values of the pre-

conditioned matrix are bounded independent of discretization parameters. Numerical

examples are tested to show the performance of proposed preconditioner.
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1. Introduction

Consider an initial-boundary value problem of the time-space fractional diffusion equa-

tion (TSFDE) (see [8])

C
0 Dαt u(x , t) = d(x , t)

∂ βu(x , t)

∂ |x |β + f (x , t), (x , t) ∈ (a, b)× (0, T], (1.1a)

u(a, t) = u(b, t) = 0, t ∈ (0, T], (1.1b)

u(x , 0) =ψ(x), x ∈ [a, b], (1.1c)
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where d(x , t) ≥ 0, u(x , t) is unknown to be solved, f (x , t) is source term, ψ(x) is initial

condition, C
0 Dαt u is the Caputo’s derivative of order α(0 < α < 1) with respect to t defined

by

C
0 Dαt u(x , t) =

1

Γ(1−α)

∫ t

0

∂ u(x , s)

∂ s
(t − s)−αds. (1.2)

Γ(·) denotes the gamma function,
∂ βu(x ,t)

∂ |x |β is the Riesz fractional derivative of order β(1<

β < 2) with respect to x defined by

∂ βu(x , t)

∂ |x |β := σβ

�
aDβx + x D

β

b

�
u(x , t), (x , t) ∈ (a, b)× (0, T], σβ = −

1

2 cos(
πβ

2
)
> 0

with the left and the right sided Riemann-Liouville derivatives, aD
β
x u(x , t) and x D

β

b
u(x , t)

being defined by

aDβx u(x , t) =
1

Γ(2− β)
∂ 2

∂ x2

∫ x

a

u(ξ, t)

(x − ξ)β−1
dξ,

x D
β

b
u(x , t) =

1

Γ(2− β)
∂ 2

∂ x2

∫ b

x

u(ξ, t)

(ξ− x)β−1
dξ,

respectively.

Fractional differential equations are a class of differential equations where the integer-

order-derivative terms are replaced by fractional-order derivative. There are several non-

equivalent definitions of fractional derivative; see [15, 25, 29]. The Caputo’s fractional

derivative is often used for time-fractional derivative. The Riemann-Liouville derivatives

and the Riesz fractional derivative are often used as space-fractional derivatives. Since

closed-form analytical solutions of fractional differential equations are often unavailable

especially in the existence of variable coefficients, a lot of useful numerical approximations

has been developed for these fractional derivatives; see [2,6,9,13,19,21,23,28,35,36,40,

42, 44]. Nevertheless, as the fractional differential operators are nonlocal, the discretiza-

tion of the Caputo’s derivative is history-dependent and the discretization of the Riesz’s

derivative lead to a dense spatial matrix. Therefore, direct solver for the linear systems

arising from discretization of TSFDEs requires very high computational complexity when

the grid is dense. This motivates us to develop fast solvers for linear systems arising from

TSFDEs.

For uniform-grid discretization of the TSFDEs with non-constant coefficients, the re-

sulting coefficient matrix is block lower triangular Toeplitz-like with Toeplitz-like blocks.

For such linear systems, the well-known block forward substitution method with Gaussian

elimination inner solver requires O (MN2 + M3N) operations and O (MN + M2) storage,

provided that N is the number of blocks in the coefficient matrix and M is the order of

each block. The computational cost is quite expensive compared with the number of the

unknowns (MN). Recently, Zhao, Jin and Lin [41] proposed to use a combination of time-

stepping method and preconditioned generalized minimum residual (PGMRES) method


