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Abstract. In this paper, we propose and analyze a spectral deferred correction method

for the fractional differential equation of order α. The proposed method is based on a

well-known finite difference method of (2− α)-order, see [Sun and Wu, Appl. Numer.

Math., 56(2), 2006] and [Lin and Xu, J. Comput. Phys., 225(2), 2007], for prediction

of the numerical solution, which is then corrected through a spectral deferred correc-

tion method. In order to derive the convergence rate of the prediction-correction iter-

ation, we first derive an error estimate for the (2− α)-order finite difference method

on some non-uniform meshes. Then the convergence rate of orders O
�

τ(2−α)(p+1)
�

and

O
�

τ(2−α)+p
�

of the overall scheme is demonstrated numerically for the uniform mesh

and the Gauss-Lobatto mesh respectively, where τ is the maximal time step size and p

is the number of correction steps. The performed numerical test confirms the efficiency

of the proposed method.
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1. Introduction

In recent years, fractional differential equations have been attracting increasing atten-

tion as they have been applied to diverse fields, including control theory, biology, electro-

chemical processes, porous media, viscoelastic materials, polymer, finance, and etc; see,

e.g., [1,2,5–7,16,19,26,28,35,37,38] and the references therein.

As one of the basic fractional partial differential equations, the fractional ordinary d-

ifferential equations (FODEs) of the form ∂ αt u(t) = f (t,u(t)) considered in this paper is
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of importance not only in its own right, but also in the fact that it reflexes the main fea-

ture and difficulty of more general fractional equations. This equation can be derived by

using continuous time random walks [18,36], in which the fractional derivative is used to

represent the degree of memory in the particle spreading. Some effort has been made in

constructing the exact solution of FODEs; see, e.g., the solution expression of more gen-

eral integro-differential equations by using the Mittag-Leffler function [25], the Adomian

decomposition analytical method to solve linear FODEs [22], homotopy methods [3, 21],

a theoretical survey of FODEs [12], etc. A number of numerical methods have been pro-

posed to discretize the fractional derivative, see, e.g., Liu et al. [33] for a finite difference

method for the fractional diffusion equation, Langlands and Henry [29] for the L1 scheme,

Sun and Wu [41] for finite difference method of the fractional diffusion-wave equation,

Lin and Xu [32] for a rigorous convergence analysis of the L1 scheme, Deng [11] for the

time fractional Fokker-Planck equation, Sun et al. [40] for an alternating direction im-

plicit scheme, Diethelm et al. [13, 14] for a predictor-corrector schema and a fractional

Adams method, Kumar et al. [27] and Cao and Xu [8] for the block-by-block methods,

Garrappa [17] for the Adams multistep method, Saadatmandi et al. [39] for an opera-

tional matrix method, Jin et al. [24] for an analysis of two semidiscrete schemes, Cao et

al. [9] and Gao et al. [20] for a higher order scheme, Zhao and Deng [43] for a Jacobian-

predictor-corrector method, and so on.

In this paper we aim at proposing and analyzing a spectral deferred correction (SDC)

method for the fractional ordinary differential equations. The SDC method has been known

as an efficient methodology for solving the classical (integer order) ordinary differential

equations, which was originally introduced by Dutt et al. [15]. This method can achieve

high order convergence through a well designed prediction-correction iteration. The first

attempt to extend the SDC to FODEs was made by Xin et al. [42]. They constructed a

spectral deferred correction scheme for a Volterra integral equation which is equivalent

to the FODEs. The numerical results presented in [42] show that high accuracy can be

achieved using relatively few nodes as compared to the fractional block-by-block method.

However, there is no theoretical analysis available in the litterature. Another related work,

done by Mao et al. [34], is the realisation of a semi-implicit SDC method in time for water

wave models with nonlocal viscous term.

In the present work, we attempt to construct a SDC scheme for the FODEs, and carry

out an analysis for the convergence rate of the proposed method. The new SDC method

for the FODEs is based on a finite difference scheme for the prediction of the numerical

solution. This finite difference scheme is a generalisation of the well-known (2−α)-order

scheme on the constant time step [32,33,41] to some non-uniform grid. In order to analyze

the convergence rate of the SDC method, we first establish an error estimate for the FD

scheme in the prediction step. This consists of an extension of the existing theoretical result

obtained for the uniform grid (i.e., constant time step size) to some non-uniform grid of

different types. Our analysis and numerical experiments show that the convergence order

of the overall scheme increases by (2 − α) and 1 respectively for the uniform grid and

Gauss-Lobatto grid after each prediction-correction loop.

The rest of the paper is organized as follows: In the next section, we describe the SDC


