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Abstract. Our purpose is to compute the multi-partially symmetric rank-one approxi-

mations of higher-order multi-partially symmetric tensors. A special case is the partial-

ly symmetric rank-one approximation for the fourth-order partially symmetric tensors,

which is related to the biquadratic optimization problem. For the special case, we im-

plement the neural network model by the ordinary differential equations (ODEs), which

is a class of continuous-time recurrent neural network. Several properties of states for

the network are established. We prove that the solution of the ODE is locally asymptot-

ically stable by establishing an appropriate Lyapunov function under mild conditions.

Similarly, we consider how to compute the multi-partially symmetric rank-one approx-

imations of multi-partially symmetric tensors via neural networks. Finally, we define

the restricted M -singular values and the corresponding restricted M -singular vectors of

higher-order multi-partially symmetric tensors and design to compute them. Numerical

results show that the neural network models are efficient.
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1. Introduction

An increasing number of signal processing, data analysis and higher-order statistics,

as well as independent component analysis [2, 6, 8, 9, 30] involve the manipulation of
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quantities with more than two indices. These high order equivalents of vectors (first order)

and matrices (second order) are called higher-order tensors, multi-dimensional matrices, or

multiway arrays.

A tensor is an N -dimensional array of numbers denoted by A ∈ RI1×I2×···×IN with

entries

ai1 i2···iN ∈ R for in = 1,2, · · · , In with n= 1,2, · · · , N .

The fourth-order partially symmetric tensors have received much attention in recent years

[10,17,25,32,38,42,45]. Zhang et al. [46] proved that the best rank-one approximation of

a symmetric tensor is its best symmetric rank-one approximation. Similarly, we can prove

that the best rank-one approximation of a fourth order partially symmetric tensor is its best

partially symmetric rank-one approximation. Hence, our goal is to focus on the following

rank-one approximation problem of a partially symmetric tensorA ∈ RI1×I1×I2×I2 by real-

valued neural networks: finding two unit vectors xn ∈ R
In (n= 1,2) andσ ∈ R to minimize

I1∑

i1,i2=1

I2∑

i3,i4=1

�
ai1i2 i3 i4

−σ · (x1,i1
x1,i2

x2,i3
x2,i4
)
�2

. (1.1)

The above problem arises from the strong ellipticity condition problem in solid mechanics

[20,21,35,41] and the entanglement problem in quantum physics [10,36].

There exists several numerical methods to solve the minimization problem (1.1), such

as the alternating least squares (ALS) or the higher-order power method (HOPM) [42] and

the semidefinite programming (SDP) relaxations [45].

Multiparameter optimizations (unconstrained and constrained) can be accomplished

by implementing the dynamical gradient systems, whose states evolve in time towards

steady-state solution critical point solutions [7, 24, 34]. The essence of a neural network,

represented as a dynamic system, is to minimize an nonnegative energy function. The

dynamical system is typically described in the form of first-order ODEs. For an given initial

value, the ODEs will approach the equilibrium point which corresponds to the solution

of the underlying optimization problem. There is an important requirement: the energy

function decreases monotonically as the solution of the ODEs approach an equilibrium

point. In particular, Che et al. [4] present the neural dynamic networks to compute a local

optimal rank-one approximation of a real-valued tensor.

In this paper, we propose a new approach for solving the minimization problem (1.1)

by neural networks. The proposed model of neural networks can be described by the first-

order ODEs, and considered as a generalization of [12,14]. We prove the locally asymptotic

stability of solutions of ODEs by establishing an appropriate Lyapunov function. Similar

to the fourth-order partially symmetric tensors, we define the real-valued higher-order

multi-partially symmetric tensor. We show that the best multi-partially symmetric rank-

one approximation of a real-valued higher-order multi-partially symmetric tensor is its

best rank-one approximation. Analogous to the fourth-order partially symmetric tensors,

we also consider the rank-one approximation of a real-valued higher-order multi-partially

symmetric tensor by neural networks. Any numerical method to solve systems of differen-


