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Abstract. In this paper, a class of new immersed interface finite element methods
(IIFEM) is developed to solve elasticity interface problems with homogeneous and non-
homogeneous jump conditions in two dimensions. Simple non-body-fitted meshes are
used. For homogeneous jump conditions, both non-conforming and conforming ba-
sis functions are constructed in such a way that they satisfy the natural jump condi-
tions. For non-homogeneous jump conditions, a pair of functions that satisfy the same
non-homogeneous jump conditions are constructed using a level-set representation of
the interface. With such a pair of functions, the discontinuities across the interface
in the solution and flux are removed; and an equivalent elasticity interface problem
with homogeneous jump conditions is formulated. Numerical examples are presented
to demonstrate that such methods have second order convergence.
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1. Introduction

In this paper, we consider the elasticity interface problem
V-o+F=0, inQ uQt, (1.1)

where o is the stress tensor, a 2 x 2 symmetric matrix, F = (f;, f»)! is a known body
force. The domain £ consists of @~ and QF, Q™ NQ+ =0, see Fig. 1 for an illustration. We
assume that the interface I' = Q~ N Q* separates O~ and Q7 is smooth enough (C?). We
also denote by n the unit vector normal to I" pointing from Q™ to Q*.

*Corresponding author. Email addresses: ygong@limestone.edu (Y. Gong), zhilin@math.ncsu.edu
(Z. Li)

http://www.global-sci.org/nmtma 23 (©)2010 Global-Science Press



24 Y. Gong and Z. Li

Figure 1: A diagram of the geometry of an elliptic interface problem.

For linearly elastic problems with small displacements, the relation between stress ten-
sor and deformation is given by

0ij =A(V-u)d;;+2ue;), (1.2)

where 2 and u are Lamé constants, u = (u;, u,)” is the displacement vector. The equations
(1.1) can be written as the component form,

(A+2 )a2ul+(x+ ) Oy O —f = (1.3)
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Due to the discontinuities in the coefficients, or/and source distribution along the interface
', the solution and flux are often discontinuous. The jump conditions across I can be
written as

[ ] =wy, (1.5)
(] =w,, (1.6)
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The jump conditions are called natural if

Wi =wy=q;=¢2=0



