
Numer. Math. Theor. Meth. Appl. Vol. 2, No. 4, pp. 421-426

doi: 10.4208/nmtma.2009.m9004s November 2009

Preservation of Linear Constraints in

Approximation of Tensors

Eugene Tyrtyshnikov∗

Institute of Numerical Mathematics of Russian Academy of Sciences, Gubkin Street,

8, Moscow 119333, Russia.

Received 13 March 2009; Accepted (in revised version) 8 April 2009

Abstract. For an arbitrary tensor (multi-index array) with linear constraints at each

direction, it is proved that the factors of any minimal canonical tensor approximation to

this tensor satisfy the same linear constraints for the corresponding directions.
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1. Introduction

Linear constraints define many important classes of structured matrices (Toeplitz, Han-

kel, various sparse matrices of special patterns etc.). A combination of Toeplitz and tensor

structures was first considered in [3]. The common case of linear constraints along with

tensor approximations of two-level matrices was first studied in [6]. Some estimates of

tensor ranks were suggested in [2, 10, 11]. The interest to tensor approximations in com-

bination with linear constraints is well justified by their role as a base for construction of

fast algorithms in difficult cases, a good example is a superfast algorithm for approximate

inversion of two-level Toeplitz matrices recently proposed in [7].

A matrix A of order n = p1p2 can be viewed as a matrix composed of blocks ai j of size

p2 × p2, where the indices i, j run from 1 to p = p1. In particular, A can be of the form

A= Ar =

r
∑

t=1

Ut ⊗ Vt , (1.1)

where Ut and Vt are matrices of order p1 and p2, respectively, and ⊗ denotes the tensor

(Kronecker) product of matrices:

U ⊗ V =







u11V · · · u1pV

· · · · · · · · ·
up1V · · · uppV






.
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We denote by T r = Tr(p1, p2) the set of all matrices of the form (1.1) with real (for

definiteness) entries for fixed values of r and p1, p2, and we are especially interested in

approximations

A≈ Ar ∈ Tr

that minimize the Frobenius norm ||A−Ar ||F (the square root of the sum of squared entries

in modulus). If ||A− B||F > ||A−Ar ||F for all B ∈ Tk with k < r and ||A− B||F ≥ ||A−Ar ||F
for all B ∈ Tr , then the minimizer matrix Ar will be called the minimal approximation of

tensor rank r.

Let us assume that the blocks ai j of a matrix A satisfy linear constraints

p
∑

i=1

p
∑

j=1

ci jai j = 0 (1.2)

with some fixed scalar coefficients ci j . For this case in [6] it was discovered and proved

that the entries of each of the matrices Ut of any minimal approximation Ar are subject

to the same constraints (1.2). It follows, for instance, that if A is a block Toeplitz matrix

(every block ai j is a function of i − j) then each of the matrices Ut is a Toeplitz matrix.

Similarly, if each of the blocks ai j is a Toeplitz matrix then each of the matrices Vt ought to

be Toeplitz.

In this paper we want to figure out to which extent the result of [6] can be generalized

to the case of tensor approximations with an arbitrary fixed number of factors:

Ar =

r
∑

t=1

Ut ⊗ Vt ⊗ · · · ⊗Wt . (1.3)

Let the number of factors in every summand be equal to s and the orders of matrices

Ut , Vt , · · · ,Wt be p = p1, p2, · · · , ps, respectively. Then the order of Ar is n = p1p2 · · · ps.

Denote the set of all matrices of the form (1.3) by T s
r = T

s
r (p1, p2, · · · , ps). For this case

matrices Ar are used as approximations for a given matrix A of order n= p1p2 · · · ps.

The matrix A can be considered as a block matrix consisting of the blocks ai j, 1≤ i, j ≤
p = p1. We will prove that from the viewpoint of preservation of linear constraints the

case of arbitrary s is analogous to the case s = 2: if the equations (1.2) are valid then the

minimality of approximation implies that the same relationships (1.2) hold true for each

of the matrices Ut .

One essential difference is still there. Suppose that A ∈ Trmax
and A /∈ Tr whenever

r < rmax. Then for s = 2 the minimal approximation is constructed via the singular value

decomposition (SVD) for any 1 ≤ r ≤ rmax, whereas in the case s > 2 there could be some

values 1 < r < rmax for which a minimal approximation of tensor rank r does not exist

(cf. [5]). Moreover, there are no generalizations of the SVD to the case s > 2 that keep all

the properties of this decomposition in the case s = 2 (some partial generalizations can be

found in [1,9]), and therefore, some other techniques are needed.


