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Abstract. We give here an overview of the orbital-free density functional theory that
is used for modeling atoms and molecules. We review typical approximations to the
kinetic energy, exchange-correlation corrections to the kinetic and Hartree energies,
and constructions of the pseudopotentials. We discuss numerical discretizations for the
orbital-free methods and include several numerical results for illustrations.
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1. Introduction

In modeling either atomic or molecular systems, the most common strategy relies on
approximate solutions of Schrödinger equations; and the so-called density functional the-
ory (DFT) has been established as one of the most widely used first-principles methods in
many fields. DFT may be dated back to 1927 [68, 74, 98, 113]. It was first realized by
Thomas [91] and Fermi [25] that the electronic structure of solids in their ground states
could be fully understood in terms of the electron density ρ alone. This fact, which gave
the origin to the DFT, was later formalized by Hohenberg and Kohn [44] in 1964. It was
proved in [44] that there exists a functional, E(ρ), of the electron density ρ of the system,
such that for any external potential Vex t , the exact ground state energy of the system is the
global minimum value of E(ρ), and the density ρ that minimizes E(ρ) is the exact ground
state density ρ0, namely

E(ρ0) =min

¨
E(ρ) : ρ ≥ 0,

∫

R
3

ρ = N

«
, (1.1)
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where N is the number of the electrons and

E(ρ) = T (ρ) + Eee(ρ) +

∫

R
3

Vex tρ (1.2)

with T (ρ) the kinetic energy and Eee(ρ) the electron-electron interaction energy. The prob-
lem remains how to evaluate the kinetic energy T (ρ) and the electron-electron interaction
energy Eee(ρ), which is of surpassing difficulty. In 1965, Kohn and Sham [56] invented
an indirect approach to the kinetic energy, the so-called Kohn-Sham (KS) method. They
proposed introducing a set of N wavefunctions {ψi}Ni=1 and expressing the total energy of
the system as [56]

E(ρ) = Ts({ψi}) + EH(ρ)+ Exc(ρ)+

∫

R
3

Vex tρ, (1.3)

where Ts({ψi}) is the exact kinetic energy of the system of non-interacting electrons with
density ρ:

Ts({ψi}) =
1

2

N∑

i=1

∫

R
3

|∇ψi|2, ρ =

N∑

i=1

|ψi|2. (1.4)

Other terms in the right hand of (1.3) are the Hartree energy, the exchange-correlation
energy and the external potential energy, respectively. The Hartree energy describes the
repulsion Coulomb interactions between electrons

EH(ρ) =
1

2

∫

R
3

∫

R
3

ρ(x)ρ(y)

|x − y| . (1.5)

The exchange-correlation energy Exc(ρ) introduces corrections to the energy that derive
from using the non-interacting electron approximation for the Hatree and kinetic energies.
Although the expression for the total energy in (1.3) is exact, Exc(ρ) is unknown. For
a system with slow varying density, we can make the local density approximation (LDA)
[55]:

Exc(ρ) =

∫

R
3

ǫxc(ρ)ρ, (1.6)

where ǫxc(ρ) is the exchange-correlation energy per particle of a uniform electron gas of
density ρ. The last term in (1.3), i.e., the integral term, represents the effect of an external
potential. For a simple many-particle system without any electric and magnetic potentials,
the external potential can be expressed by

Vex t(r) = −
M∑

α=1

Zα

|r − Rα|
, (1.7)


