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Abstract. This paper describes an application of weighted Laguerre polynomial func-
tions to produce an unconditionally stable and accurate finite-difference scheme for the
numerical solution of transient diffusion and convection-diffusion problems. The un-
conditionally stability of Laguerre-FDM (L-FDM) is guaranteed by expanding the time
dependency of the unknown potential as a series of orthogonal functions in the domain
(0,∞), avoiding thus any time integration scheme. The L-FDM is a marching-on-in-
degree scheme instead of traditional marching-on-in-time methods. For the two heat-
transfer problems, we demonstrated the accuracy, numerical stability and computational
efficiency of the proposed L-FDM by comparing its results against closed-form analytical
solutions and numerical results obtained from classical finite-difference schemes as, for
instance, the Alternating Direction Implicit (ADI).
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1. Introduction

The conventional finite difference method (FDM) has been proven to be an effective
technique for accurate solution of numerous transient diffusion and convection-diffusion
problems. Finite-difference (FD) schemes for transient problems may be broadly classified
into explicit and implicit schemes, and a combination thereof. Explicit FD schemes are eas-
ier to implement as the unknown potential at the future time step may be written explicitly
as a function of its values on previous time step. Conversely, implicit FD schemes require
at each time step the solution of a coupled system of algebraic equations and thus higher
computational effort.
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Explicit FD schemes are conditionally stable. For transient diffusion problems, numeri-
cal stability is only guaranteed if the time step size ∆ t does not exceed a maximum value
defined by a stability criterion, expressed in terms of a diffusion coefficient, time step and
spatial discretization sizes [19]. For the solution of convection-diffusion problems, the
Courant-Friedrich-Levy (CFL) stability condition [2,3] is a necessary condition for the nu-
merical stability of explicit FD schemes. The CFL condition relates the time step size to both
the propagation velocity in the advection term and the spatial discretization size. Owning to
conditional stability, explicit FD schemes are difficult to apply to diffusion and convection-
diffusion problems defined on domains with widely different length scales (as, for instance,
thin slot, thin films, layered media) if a too long transient is desired. since the maximum
time step size is constrained by the smallest length scale, a huge number of time steps
may be required to guarantee stability for the entire transient analysis, which increases the
CPU computation time and effort. Implicit FD schemes are unconditionally stable and thus
have been widely used to avoid excessively small time-step sizes, as required by explicit
schemes [4,5]. However, in order to reduce memory requirements and computation time,
combined or mixed explicit-implicit schemes have been preferred instead of fully-implicit
ones. The two most widely-used mixed FD schemes are the Crank-Nicholson [19] and
the alternating-direction-implicit (ADI) [4]. Although unconditionally stable, the time step
size in fully-implicit or mixed FD schemes must be kept reasonably small to avoid large dis-
cretization (or dispersion) errors, which deteriorate the accuracy of the numerical solution.
Hence, the computation time to achieve accurate numerical solutions may be prohibitively
large even with unconditionally stable FD schemes. We also show afterwards how the ac-
curacy of results obtained with the alternating-direction-implicit scheme deteriorates for
time steps ∆ t much higher than its maximum value defined by the stability criterion.

In the current work, we thus propose an unconditionally stable and accurate FD scheme
for the numerical solution of transient diffusion and convection-diffusion problems. The
core idea is to separate the spatial and temporal dependencies of the unknown field and
to expand the latter dependency as a series of orthogonal functions in the domain [0,∞).
These orthogonal functions are the weighted Laguerre polynomials [8,9,12]. The resulting
system of partial differential equations for spatially-variable coefficients are then solved
using classical FD schemes. With the proposed Laguerre-FD scheme (L-FDM), we avoid thus
any time integration and therefore we get rid of any stability criterion. The proposed L-FDM
may be alternatively viewed as a combination of classical FDM with an integral transform
performed in the time domain, whose orthogonal eigenfunctions are the weighted Laguerre
polynomials. The Laguerre functions have been widely as spectral method to approximate
different types of equations [35–41].

As will be demonstrated, the L-FDM is a marching-on-in-degree scheme instead of tra-
ditional marching-on-in-time FD schemes. Numerical stability and discretization errors
are no longer affected by the time step size. Therefore, the L-FDM may be an attractive
approach to tackle diffusion and convection-diffusion problems defined on domains with
widely-different length scales and with a too long transient. The proposed L-FDM has been
already successfully employed for the solution of transient Maxwell’s equations [1]. Nev-
ertheless, to the best knowledge of the authors, no previous work has applied the L-FDM


