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Abstract. We consider a splitting method for the numerical solution of the regularized
Kobayashi-Warren-Carter (KWC) system which describes the growth of single crystal par-
ticles of different orientations in two spatial dimensions. The KWC model is a system
of two nonlinear parabolic PDEs representing gradient flows associated with a free en-
ergy in two variables. Based on an implicit time discretization by the backward Euler
method, we suggest a splitting method and prove the existence as well as the energy
stability of a solution. The discretization in space is taken care of by Lagrangian finite
elements with respect to a geometrically conforming, shape regular, simplicial triangula-
tion of the computational domain and requires the successive solution of two individual
discrete elliptic problems. Viewing the time as a parameter, the fully discrete equations
represent a parameter dependent nonlinear system which is solved by a predictor cor-
rector continuation strategy with an adaptive choice of the time step size. Numerical
results illustrate the performance of the splitting method.
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1. Introduction

The Kobayashi-Warren-Carter (KWC) system is an orientation field based multi-phase
field model describing the growth of single crystal particles of different orientations in two
spatial dimensions. It has been originally suggested in [19,31] (cf. also [25,32]) and fur-
ther studied in [14–16]. We refer to the monograph [25] for further references. The KWC
model is a system of two nonlinear parabolic PDEs representing gradient flows associated
with a free energy in two variables, namely the orientation angle and the orientation order
(local degree of crystallinity). In particular, the equation with regard to the orientation
angle is a second order total variation flow. A mathematical analysis of the KWC system
has been provided in [11, 18, 21, 22] mainly focusing on results concerning the existence
of a solution. Splitting methods for the numerical solution of PDEs go back to the seminal
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work [24] and have been further studied in [28] (cf. also the monographs [13,30] and the
review article [20] as well as the references therein).

In this paper, we consider a standard regularization of the total variation flow and focus
on an approximation of the thus regularized KWC system by a splitting scheme based on
an implicit discretization in time by the backward Euler method. The splitting allows to
treat the problems in the orientation angle and the orientation order independently at each
time step. We prove the existence and energy stability of a solution. For discretization
in space we use Lagrangian finite elements with respect to a geometrically conforming,
shape regular, simplicial triangulation of the computational domain. Considering the time
as a parameter, the fully discrete nonlinear equations represent a parameter dependent
nonlinear system which is solved by a predictor-corrector continuation strategy (cf. [6,17]).
This strategy consists of constant continuation as a predictor and Newton’s method as a
corrector and features an adaptive choice of the time step. Numerical results are provided
that illustrate the performance of the splitting scheme.

In this paper, we use standard notation from Lebesgue and Sobolev space theory (cf.,
e.g., [29]) and the theory of functions of bounded variation (cf., e.g., [1,7,12]) and func-
tions of weighted bounded variation (cf. [2]). In particular, for a bounded domain Ω ⊂
Rd , d ∈ N, we refer to Lp(Ω), 1≤ p <∞, as the Banach space of p-th power Lebesgue inte-
grable functions on Ω with norm ‖ · ‖0,p,Ω and to L∞(Ω) as the Banach space of essentially
bounded functions on Ω with norm ‖ · ‖0,∞,Ω. Given a Muckenhoupt weight function ω of
class Ap, 1 ≤ p <∞, [23, 27], the space Lp(Ω;ω) is the Banach space of weighted p-th
power Lebesgue integrable functions u on Ω with norm ‖u‖0,p,ω,Ω := (

∫

Ω
ω|u|p d x)1/p.

Further, we denote by W s,p(Ω), s ∈ R+, 1 ≤ p ≤ ∞, the Sobolev spaces with norms
‖ · ‖s,p,Ω. We note that for p = 2 the spaces L2(Ω) and W s,2(Ω) = Hs(Ω) are Hilbert spaces
with inner products (·, ·)0,2,Ω and (·, ·)s,2,Ω. In the sequel, we will suppress the subindex 2
and write (·, ·)0,Ω, (·, ·)s,Ω and ‖·‖0,Ω,‖·‖s,Ω instead of (·, ·)0,2,Ω, (·, ·)s,2,Ω and ‖·‖0,2,Ω,‖·‖s,2,Ω.

Moreover, for a Muckenhoupt weight function ω of class A1 we denote by BV (Ω;ω)
the Banach space of functions u ∈ L1(Ω;ω) such that

varωu(Ω) := sup
¦

−
∫

Ω

u∇ · q d x ,q ∈ C1
0 (Ω;R2), |q| ≤ω in Ω

©

<∞,

equipped with the norm

‖u‖BV (Ω;ω) := ‖u‖0,1,ω,Ω + varωu(Ω).

2. The Kobayashi-Warren-Carter system

The Kobayashi-Warren-Carter system is an orientation field based multi-phase field ap-
proach where the associated free energy functional is given in terms of an orientation field
Θ, which locally describes the crystallographic orientation, and a structural order parame-
ter φ, which is called the orientation order and describes the local degree of crystallinity.


