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Abstract. In this work, we propose and analyze a second-order accurate numerical

scheme, both in time and space, for the multi-dimensional Poisson-Nernst-Planck sys-

tem. Linearized stability analysis is developed, so that the second order accuracy is

theoretically justified for the numerical scheme, in both temporal and spatial discretiza-

tion. In particularly, the discrete W 1,4 estimate for the electric potential field, which

plays a crucial role in the proof, are rigorously established. In addition, various numer-

ical tests have confirmed the anticipated numerical accuracy, and further demonstrated

the effectiveness and robustness of the numerical scheme in solving problems of practi-

cal interest.
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1. Introduction

The Poisson–Nernst–Planck (PNP) system has been widely used in modeling transmem-

brane ion channels, semiconductor, and electrochemical devices. The Poisson’s equation

describes the electrostatic potential stemming from the charge density that consists of mo-

bile ions and fixed charges. The Nernst-Planck equations model the diffusion and migration

of ion species in the gradient of electrostatic potential. For symmetric 1 : 1 electrolytes, the

ion transport is described by the PNP system

nt = Dn∆n− eβ∇ · �Dnn∇φ� , (1.1a)

pt = Dp∆p+ eβ∇ ·
�

Dpp∇φ
�

, (1.1b)

−∇ · ǫ0ǫr∇φ = e(p− n) +ρ f , (1.1c)
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where p and n are the concentrations of positive and negative charged species, Dp and

Dn are their diffusion constants, e is the elementary charge, β is the inverse of thermal

energy, φ is the electrostatic potential, ǫ0 is the vacuum permittivity, ǫr is the relative

permittivity(or dielectric coefficient), and ρ f is the density of fixed charge.

Let L, D0, and c0 be the characteristic length, diffusion constant, and concentration,

respectively. Denote another characteristic length λD =

q

ǫ0ǫr

2βe2c0
for an ionic solution with

bulk ionic concentration c0 and homogenous dielectric coefficient ǫr . We shall introduce

the following dimensionless parameters and variables:

x̃ = x/L, t̃ = tD0/LλD, p̃ = p/c0, ñ= n/c0, (1.2a)

D̃p= Dp/D0, D̃n= Dn/D0, φ̃= βeφ, ρ̃ f= ρ f/c0e. (1.2b)

Rescaling above quantities and dropping all the tildes lead to a nondimensionalized PNP

system






















∂t p =
λD

L
Dp∇ ·

�∇p+ p∇φ� ,

∂t n=
λD

L
Dn∇ ·

�∇n− n∇φ�,

− 2
λ2

D

L2
∆φ = p− n+ρ f .

(1.3)

For ease of presentation, we choose a computational domain Ω = (0,1)3, and consider

zero Neumann boundary conditions

∂ φ

∂ n

= 0,
∂ p

∂ n

=
∂ n

∂ n

= 0 on ∂Ω. (1.4)

For simplicity, we denote by Cn =
λD

L
Dn , Cp =

λD

L
Dp, and κ = L2

2λ2
D

.

Recently, there has been growing interests in incorporating effects that are beyond the

mean-field description to the PNP theory, such as the steric effect, ion-ion correlations, and

inhomogeneous dielectric environment [12, 13, 16, 19, 22, 23, 27, 31]. Various versions of

modified PNP theory have been developed to account for such ignored effects within the

framework of the PNP theory. For instance, the steric effect of ions have been taken into

account by including excess free energy of solvent entropy [13–15, 22, 33], hard-sphere

interaction kernels [12, 27], or the fundamental measure theory [23]. A modified PNP

model has been proposed to consider Coulombic ion-ion correlations in inhomogeneous

dielectric environment [19].

Due to the nonlinear coupling of the electrostatic potential and ionic concentrations, it

is not trivial to solve the PNP system analytically, even numerically. Much effort has been

devoted to the development of numerical methods that possess desired properties [1–3,5,

8–10,17,18,20,21,24–27,29,32]. For instance, a hybrid numerical scheme that employs

adaptive grids has been proposed to solve a two-dimensional PNP system [25]. A delicate

temporal discretization scheme has been recently developed to preserve free energy dy-

namics [8]. Using Slotboom variables, Liu and Wang [17] have developed a free energy


