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Abstract. In this paper we present a novel approach for solving linear elliptic PDEs
in regular convex polygons. The proposed algorithm relies on the so-called unified
transform, or Fokas method. The basic step of this method involves the formulation of
an equation coupling the finite Fourier transforms of the given boundary data and of the
unknown boundary values, which is called the global relation. Herewith, a numerical
scheme is proposed which computes the solution in the interior of a regular convex
polygon using only the associated global relation. In particular, an adaptive complex
collocation method is presented in order to solve numerically the global relation, using
discrete boundary data. Additionally, the solution of a given PDE is computed in the
entire computational domain, using a spatial-stepping scheme in conjunction with an
adaptive complex collocation method. Moreover, a polynomial interpolation scheme is
used near the center of the domain, and this increases the accuracy of the proposed
method. We provide numerical results illustrating the applicability of the method as
well as a comparison to a finite element formulation.
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1. Introduction

Boundary value problems (BVPs) for linear partial differential equations (PDEs) can
be solved via an integral transform method that was introduced in [7–10]. This method,
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which is known as the unified transform, or Fokas method, requires two basic steps. First,
the solution is expressed in terms of integrals formulated in the complex Fourier space that
involve certain Fourier-type integral transforms (containing complex valued parameters) of
the Dirichlet and Neumann boundary values integrated along the boundary of the domain.
These integral transforms are coupled via an algebraic equation known as the global rela-
tion, which defines a generalized DtN map. Then, the boundary values that are unknown
can be determined using the fact that the global relation holds for all complex values λ.
The above method can be considered as the spectral analogue of the classical boundary
integral method, which is formulated in the physical instead of the spectral space.

For BVPs formulated in complicated domains and general boundary conditions the
global relation cannot be solved in closed form. However, for certain BVPs for which classi-
cal methods have failed, analytical solutions based on the unified transform method have
been derived [12]. For polygonal domains, the global relation has been solved numerically
with a collocation-type technique introduced in [14] for a variety of BVPs [6,13,15,16,18].
Formulations based on Legendre polynomials can achieve spectral accuracy [13, 16]. The
finite Fourier transform of Legendre polynomials can be computed by using the modified
Bessel function [16] (which is computationally more efficient than using the closed form
solution [11]). By oversampling the global relation in the complex λ-plane [13], and fur-
thermore, by choosing an appropriate set of collocation points along certain rays [16], an
overdetermined linear system can be derived with a low condition number. Solving this
linear system yields the unknown boundary values.

In this paper, a novel numerical method is proposed for solving linear elliptic PDEs
in the interior of convex regular polygons with an arbitrary number of sides. The key
ingredient of this approach is an adaptive complex collocation scheme designed to be used
with analytical and/or discrete boundary data. The solution is computed in a marching
approach beginning from the boundaries and advancing towards the domain’s central grid
point, using a spatial-stepping scheme, based on Heun’s method. By adaptively choosing
the collocation points in the Fourier space at each spatial level we avoid the derivation
of rank-deficient linear systems, keeping the marching procedure stable. Additionally, by
using a polynomial interpolation scheme near the center of the domain, the accuracy of
the approximated solution can be further improved.

It should be noted that an alternative approach based on the direct numerical eval-
uation of the integral representation has been demonstrated in [6]; however, according
to the authors of [6], this implementation needs further development in order to become
computationally practical. The combination of the analysis of the global relation and of
the use of the classical Green’s representation is advocated in [4].

There are several advantages associated with the unified transform over existing meth-
ods. The main advantage is that it is a boundary based method, thus the computational
work is reduced. This is an important feature for problems with small surface-to-volume
ratio. Contrary to the boundary element method, the unified transform does not rely on
the availability of fundamental solutions, and furthermore, it does not require the com-
putation of integrals that contain singularities. It is worth mentioning that a boundary
integral formulation based on Legendre polynomials has been considered in [13], and it


