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Abstract. In the current investigation, we present a numerical technique to solve Fredh-

olm-Hammerstein integral equations of the second kind. The method utilizes the free

shape parameter radial basis functions (RBFs) constructed on scattered points as a basis

in the discrete Galerkin method to estimate the solution of integral equations. The

accuracy and stability of the classical RBFs heavily depend on the selection of shape

parameters. But on the other hand, the choice of suitable value for shape parameters

is very difficult. Therefore to get rid of this problem, the free shape parameter RBFs

are used in the new method which establish an effective and stable method to estimate

an unknown function. We utilize the composite Gauss-Legendre integration rule and

employ it to estimate the integrals appeared in the method. Since the scheme does

not need any background meshes, it can be identified as a meshless method. The error

analysis of the method is provided. The convergence accuracy of the new technique

is tested over several Hammerstein integral equations and obtained results confirm the

theoretical error estimates.
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1. Introduction

Among the meshless methods, RBFs are effective techniques for interpolating an un-

known function over a scattered set of points which have applied in the past few decades.

The interpolation problems using traditional RBFs are usually ill-conditioned, i.e., the con-

dition number of coefficient matrix is very large [18]. Therefore, a small perturbation in
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the initial data may produce large amount of perturbation in the solution. In most RBFs

the stability and accuracy of solution depend heavily on the choice of a positive parame-

ter called as shape parameter [50]. Many authors have investigated an optimal value for

shape parameters which in general is a difficult work [26, 27, 30]. Therefore the implica-

tion of free shape parameter RBFs is very useful in compactions. The most famous free

shape parameter RBFs are known in the literature as thin plate splines and powers which

are interpreted as a generalization of univariate natural splines.

Many problems of mathematical physics, engineering and mechanics can be stated

in the form of Hammerstein integral equations [24, 39, 40] which can be considered as

follows:

u(x)−λ
∫ b

a

K(x , y)Φ(y,u(y))dy = f (x), a ≤ x , y ≤ b, a, b ∈ R, (1.1)

where the kernel function K(x , y) and the right hand side function f (x) are given, the

unknown function u(x) must be determined, λ ∈ R is a non-zero constant and the known

function Φ is continuous and nonlinear respect to the variable u. These types of integral e-

quations also arise as a reformulation of boundary value problems with a certain nonlinear

boundary condition [15,16,21].

Since the analytical solution of Hammerstein integral equations is mostly difficult, it is

valuable to obtain their numerical solutions. Several methods based on the basic functions

so-called projection methods including collocation and Galerkin methods have been con-

sidered for solving these types of integral equations. The discrete collocation method [12],

the new collocation-type method [34,35], the iterated Galerkin method [32], the discrete

Galerkin method [13] and the modified iterated projection method [28] have been applied

to solve Hammerstein integral equations. Authors of [19] have described discrete Legen-

dre spectral methods for solving these types of integral equations. The Nystrom methods

with the existence of asymptotic error expansion [9,29] have been used to solve the Ham-

merstein Fredholm integral equations. Walsh-Hybrid functions [43] have been utilized

to solve Hammerstein integral equation of the second kind. The Adomian decomposition

method [48,49] has been investigated for the numerical solution of these types of integral

equations. Haar wavelets [36], rationalized Haar wavelet [22], Legendre wavelets [1,31]

have been studied for nonlinear Hammerstein integral equations.

In recent years, the meshless approximations have been applied for the numerical so-

lution of various types of integral equations. The meshless discrete collocation schemes

have been investigated based on the RBFs for solving linear and nonlinear integral equa-

tions on non-rectangular domains with sufficiently smooth kernels [2, 3] and weakly sin-

gular kernels [7, 8]. The RBFs have been applied for the numerical solution of nonlinear

Volterra-Fredholm-Hammerstein integral equations [44]. The meshless product integra-

tion (MPI) method [6] has been proposed to solve one-dimensional linear weakly singu-

lar integral equations. The MLS methodology as a local meshless method has been used

for solving linear and nonlinear two-dimensional integral equations on non-rectangular

domains [5, 41] and integro-differential equations [20]. The paper [4] has described a

computational method for solving Fredholm integral equations with logarithmic kernels


