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Abstract. A modified weak Galerkin finite element method is applied to the poroelas-

ticity problems, in which, we use the piece-wise polynomial space to approximate the

displacement and the pressure, and we utilize the weak derivative operators to replace

the classical ones in the modified weak Galerkin algorithm. Based on the traditional

weak Galerkin finite element method, the modified method reduces the total amount

of computation by eliminating the degrees of freedom on the boundaries. The error

estimates are given and the numerical results are reported to illustrate our theoretical

results.
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1. Introduction

The poroelasticity describes the coupled mechanics and flow in porous media, which

is widely used in such engineering field, as environmental engineering [4,5,18], reservoir

engineering [2,3,16], the earthquake engineering [7], biomechanics [17,19,21], and ma-

terials science [28]. Since the equations of poroelasticity are so complex, that is difficult

to find the analytical solutions. For this reason, the numerical methods for the poroe-

lasticity problems such as continuous Galerkin element method [13,14], the least-squares

mixed finite element method [1,6,12], the discontinuous Galerkin method [15], and weak

Galerkin finite element methods [20] are extensively studied.

Weak Galerkin (WG) finite element method [9, 23, 24] refers to a generalization of

the classical finite element method, in which, we use discrete weak differential operators

to replace the classical ones. In addition the stabilizers are introduced to enforce the

weak continuous property. In the WG methods, the approximate finite element are given

by piecewise polynomials. As a result, it is more convenient to construct the high-order
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WG spaces, and the relaxation of the continuity enables the application of WG methods

on polygonal meshes. The weak functions given in the classical WG method have two

componenets which are defined both on the interior and the boundaries of the elements

respectively. We consider a modified weak Galerkin (MWG) finite element method in this

paper, where componenets are determined by the interior components. Consequently, the

MWG methods have fewer degrees of freedom than the WG methods.

The WG method is first introduced in [23] for solving the second-order elliptic equation

by using the Raviart-Thomas elements and the Brezzi-Douglas-Marini elements. Later in

[9, 24], the stabilizers are introduced. With the help of stabilizers, the general piecewise

polynomial spaces are applied to the methods on polygonal meshes. This WG discretization

is used to solve many model problems, such as the Stokes equation [25,26], the Brinkman

equation [8,29], the biharmonic equation [10,30], the linear elasticity equation [22,27],

and the poroelasticity equation [20].

In [20], the authors propose a WG method for the poroelasticity problem by a mixed

finite element method including the pressure, fluid flux, and displacement, in which the

Raviart-Thomas-Nedelec space is used to satisfy the boundary condition. In this paper,

we shall study a MWG method for the poroelasticity problem with the displacements and

pressure. We consider the following model problem:

− (λ+µ)∇(∇ · u)−µ∇ · (∇u) +α∇p = F, (1.1a)

∂

∂ t
(c0p+α∇ ·u)−∇ · (k∇p) = Q (1.1b)

with the boundary conditions

u = ug , on ∂Ω, (1.2a)

p = pd , on ∂Ω, (1.2b)

u = u0, in Ω, when t = 0, (1.2c)

p = p0, in Ω, when t = 0, (1.2d)

where Ω is a polygonal or a polyhedral domain in Rd(d = 2,3), λ > 0 is the dilation

modulus, µ > 0 refers to the shear modulus, c0 ≥ 0 denotes the combined porosity of the

medium and compressibility of the fluid, α > 0 is the Biot-willis constant, and k > 0 gives

the hydraulic conductivity of the media. A weak formulation for (1.1a)-(1.2d) is given by

((λ+µ)∇ · u,∇ ·w) + (µ∇u,∇w)− (αp,∇ ·w) = (F,w), ∀w ∈ [H1
0(Ω)]

d ,

(αq,∇ · ut) + (c0pt ,q) + (k∇p,∇q) = (Q,q), ∀q ∈ H1
0(Ω).

The corresponding MWG approximation algorithm is given in this paper, which, compared

with the traditional WG method, could reduce the computing costs significantly.

The rest of this paper is organized as follows. In Section 2, we introduce the MWG

algorithm which will be used in this paper. Section 3 is devoted to give the error equations

and the error estimates for the semi-discrete form. The error analysis for the fully-discrete

form is given in Section 4. Section 5 is presented to give the proof of an important lemma.

Numerical tests are presented in Section 5.


