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Abstract. The purpose of this paper is to derive the generalized conjugate residual
(GCR) algorithm for finding the least squares solution on a class of Sylvester matrix
equations. We prove that if the system is inconsistent, the least squares solution can be
obtained within finite iterative steps in the absence of round-off errors. Furthermore,
we provide a method for choosing the initial matrix to obtain the minimum norm least
squares solution of the problem. Finally, we give some numerical examples to illustrate
the performance of GCR algorithm.
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1. Introduction

Matrix equations appear frequently in many areas of applied mathematics and play
important roles in many applications, such as control theory and system theory [25-27].
For example, the descriptor linear system

captures the dynamic behavior of many physical systems in practice [29-31] and the sec-
ond order linear system

Ayi + A% +Ax +Bou=0 (1.2)

has wide applications in vibration and structural analysis, robotics control and spacecraft
control [32,33]. It is known that certain control problems, such as pole/eigenstructure
assignment and observer design are closely related to the generalized Sylvester matrix
equations (1.1) and (1.2). To solve the additive decomposition problem of a transfer
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matrix [34], we need to find the solution pair (X,Y) of the generalized coupled Sylvester
matrix equations

AX —-YB=C,
(1.3)
DX —-YE =F.
In this paper, we consider the solution of the following matrix equations
AlXB]_ = C]_,
(1.4)
AZXBZ = Cz,

where A; € RP*™ B; € R™9, C; € RP*Y and A, € R™*™, B, € R™**, C, € R™** are given
matrices, and X € R™*" is an unknown matrix to be determined.

There have been many papers considering various solutions of the matrix equatio-
ns(1.4). For instance, Mitra [1,2] gave conditions for the existence of a solution and a
representation of the general common solution to the system (1.4). Navarra et al. [3]
derived the sufficient and necessary conditions for the existence of a common solution to
the system (1.4). Yuan [4] obtained an analytical expression of the least squares solu-
tion of the system (1.4) by using the generalized singular value decomposition (GSVD) of
matrices. Sheng and Chen [5] presented a finite iterative method when the system (1.4)
is consistent. Cai and Chen [6] constructed an iterative algorithm for the least squares
bisymmetric solution of the matrix equations (1.4) by applying the theory of convex anal-
ysis. In [24], Dehghan and Hajarian presented an algorithm for solving matrix equations
(1.4) in order to obtain (R, S)-symmetric and (R, S)-skew symmetric solution. An efficient
iterative method was proposed for finding the generalized centro-symmetric solution of
the matrix equations (1.4) by Dehghan and Hajarian [43]. Chen et al. [38] obtained com-
mon symmetric least squares solutions of the matrix equations (1.4) by using the LSQR
iterative method. Wang et al. [42] presented a direct method to solve the least squares
Hermitian problem of the complex matrix equations (AXB, CXD) = (E, F) with the help of
matrix-vector product and the Moore-Penrose generalized inverse.

In the past decades, most of the proposed iterative algorithms for solving linear matrix
equations were obtained from the extension of algorithms which were previously intro-
duced for solving the linear system of equations Ax = b. See for [7-13,39,40]. For exam-
ple, Bai proposed a Hermitian and skew-Hermitian splitting (HSS) iteration algorithm to
solve the Sylvester matrix equation

AX +XB=F, (1.5)

with non-Hermitian and positive definite/semi-definite matrices [44]. A nested splitting
conjugate gradient (NSCG) iteration method [45] was proposed for solving the matrix
equation

AXB=C. (1.6)



