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Abstract. High order total variation (TV2) and ℓ1 based (TV2L1) model has its advan-
tage over the TVL1 for its ability in avoiding the staircase; and a constrained model has
the advantage over its unconstrained counterpart for simplicity in estimating the param-
eters. In this paper, we consider solving the TV2L1 based magnetic resonance imaging
(MRI) signal reconstruction problem by an efficient alternating direction method of
multipliers. By sufficiently utilizing the problem’s special structure, we manage to make
all subproblems either possess closed-form solutions or can be solved via Fast Fouri-
er Transforms, which makes the cost per iteration very low. Experimental results for
MRI reconstruction are presented to illustrate the effectiveness of the new model and
algorithm. Comparisons with its recent unconstrained counterpart are also reported.
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1. Introduction

Nowadays, magnetic resonance imaging (MRI) is crucial in diagnosis because of its
noninvasive nature and glorious depiction of human organs and tissues. However, achiev-
ing high spatio-temporal resolutions is challenging in dynamic MRI due to the hardware
limitations and the risk of peripheral nerve stimulation. Recently, compressive sensing
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(CS) theory [4] has been successfully applied to accelerate MRI scanning [34]. Partial
data acquisition increases the spacing between read-out lines, thereby reducing scan time;
however, this reduction in the number of recorded Fourier components leads to aliasing ar-
tifacts in images which must be removed by the image reconstruction process. Therefore,
finding an approach for accurate reconstruction from highly undersampled k-space data is
of great necessity for both quick MR image acquisition and clinical diagnosis.

Motivated by the compressive sensing theory, Lustig et al. [23] proposed their con-
strained model for the MR image reconstruction. In their work, this problem is formulated
as follows:

min
u
‖u‖T V +τ‖Φ⊤u‖1, s.t. ‖Au− f ‖2 ≤ σ, (1.1)

where ‖u‖T V =
∫

Ω
|∇u| is the total variation [26] (TV), Φ is the wavelet transform (e.g. the

Haar wavelet basis is used in our experiments). The superscript ⊤ denotes transpose (con-
jugate) of matrices. ‖Φ⊤u‖1 is the ℓ1-norm of the representation of u under the wavelet
transform Φ, τ > 0 is a scalar which balances Φ sparsity with TV sparsity, σ > 0 is related
to the noise level. Let P ∈ Rp×N be a selection matrix containing p rows of the identity
matrix of order N , F be the Fourier transform, and we have A= PF .

Constrained problems are usually much more difficult to solve than the unconstrained
ones. The unconstrained version [32] of model (1.1) reformulates the reconstruction as

min
u
‖u‖T V +τ‖Φ⊤u‖1 +

η

2
‖Au− f ‖22, (1.2)

where the regularization parameter η > 0 is crucial to the reconstruction results: an im-
properly large weight for the data fidelity term results in serious residual artifacts, whereas
an improperly small weight results in damaged edges and fine structures [10]. From the
optimization theory, problems (1.1) and (1.2) are equivalent in the sense that solving one
of the two will determine the parameter in the other such that both give the same solution.

A number of numerical methods have been proposed for solving the above uncon-
strained model (1.2) [9, 11, 30]. However, few works focus on solving the constrained
problems (1.1) directly, while choosing a reasonable value of σ is usually much easier than
find a suitable value of η. In order to overcome choosing of the regularization parameter,
there is a good choice to solve the constrained model directly [1,2,13,19,25,36].

A significant advantage of TV regularization is that it preserves edges in the solution.
However, the classical TV norm causes staircase effects in the smooth regions [8,22,24,28,
33]. To overcome the above drawback of the TV regularization, in 2003, a high order TV
regularization norm ‖u‖T V 2 =

∫

Ω
|∇2u| have been proposed by Tai et al in [24]. Inspired

from T V 2 norm regularization, Xie et al. propose an unconstrained T V 2 based MR image
reconstruction model [29] as:

min
u
‖u‖T V 2 +α‖Φ⊤u‖1 +

η

2
‖Au− f ‖22, (1.3)

where
‖u‖T V 2 = ‖∇2u‖ =

Æ

(∇x xu)2 + (∇x yu)2 + (∇y xu)2 + (∇y yu)2.


