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Abstract. Hexagonal grids are valuable in two-dimensional applications involving Lapla-
cian. The methods and analysis are investigated in current work in both linear and non-
linear problems related to anisotropic Laplacian. Ordinary and compact hexagonal grid
finite difference methods are developed by elementary arguments, and then analyzed
by perturbation for standard Laplacian. In the anisotropic case, analysis is done through
reduction to the standard one by using Fourier vectors of mixed types. These hexagonal
seven-point methods, with established theoretic stabilities and accuracies, are numer-
ically confirmed in linear and semi-linear anisotropic Poisson problems, and can be
applied also in time-dependent problems and in many applications in two-dimensional
irregular domains.
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1. Introduction

Hexagonal (Hex) grid methods are of interest in many research studies: [16] (direct
method), [17] (has a formula without proof), [5] (seven-point method on rectangular
grid with explicit form of eigen pairs), [27] (periodic boundary condition), [8–10] (nu-
merical modeling in spherical coordinates), [7] (action potential in numerical heart mod-
eling), [20] (showing advantages of Hex grids over commonly used square grids for use in
atmospheric and ocean models). In the article [15], Hex grid FD methods are derived in
a finite volume (FV) approach involving standard Laplacian, and used in the simulation of
electrical wave phenomena propagated in two-dimensional reserved-C type cardiac tissue,
exhibiting both linear and spiral waves more efficiently than similar computation carried
on rectangular FVs. We note these cited works all used standard Laplacian and mostly on
one configuration of regular hexagon.
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Aiming at two-dimensional applications involving anisotropic Laplacian (e.g., [21]),
we extend in the current work the hexagonal seven-point methods to solving partial dif-
ferential equations involving anisotropic Laplacian. Discretizations based on both ordinary
and compact hexagonal seven-point methods are developed and analyzed. Also considered
are the associated Hex grid discretizations with three-color iterative update [2,13,24]. The
applications include linear and semilinear anisotropic Poisson equations.

In case of a configuration consisting of (subset of) Cartesian type regular hexagons, we
denote by r the radius of a typical hexagon, h (=

p
3r/2) the height, and d (= 2h) the

center-to-center distance. At a typical center node, P0 = (x0, y0), the six neighbor (center)
nodes are

Pj = (x j, y j) = (x0, y0) + d(cosξ j , sinξ j), ξ j = ϕ+
π

6
+

jπ

3
, j = 1, · · · , 6. (1.1)

Here the phase angle, ϕ, serves as the configurarion parameter. We focus on two particular
instances : type I (ϕ = 0) and type II (ϕ = −π/6). Hexagon centers in lattices of these
two types are indexed as for an orthogonal Cartesian mesh as shown in Table 1, while
the geometry and neighborhood of a general Hex FV in Table 2. We refer to Figs. 1(a),
1(b), 2(a), and 2(b) for visualization, and propose a three-color (Figs. 1(c) and 1(d))
algorithm in §4.2. In applications, a two-dimensional irregular domain may be approxi-
mated by a sequence of (not necessarily Cartesian) nets of hexagons. Actually, previous
work in numerical modeling of electrocardiogram in a reversed C-type domain relies on
this (Algorithm 1 in [15]).

Table 1: Lattices of type I and II regular hexagons.

Phase angle Type I, ϕ = 0 Type II, ϕ = −π/6
Center point ieven iodd jeven jodd

cx(i, j) (1.5i− 0.5)r 2ih (2i− 1)h

c y(i, j) 2 jh (2 j− 1)h (1.5 j− 0.5)r

Table 2: Local geometry at a hexagon : six vertices and six neighbor centers with indices periodically
extended when appropriate.

Phase angle ϕ ∈ R
Vertices Vk =

�

v x(∗, k), v y(∗, k)
�

, k = 1,2, · · · , 6
v x(∗, k) cx(∗) + r cos(ϕ+ kπ

3
)

v y(∗, k) c y(∗) + r sin(ϕ+ kπ

3
)

Neighbor centers Pk = Vk + Vk+1 − P0, k = 1,2, · · · , 6

In analyzing the discrete anisotropic Laplacian, we note that, (i) spectral analysis of
iterative methods on a net of hexagons seems not as easy as the analysis on square grids
[12, 25], because the set of finite trigonometric series is incomplete for the error analysis
(even) on a single regular hexagon [18,19,26], and (ii) for Hex FVs of types I and II, con-


