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Abstract

This paper gives the truncated version of the Minpert method: the incomplete

minimum perturbation algorithm (IMinpert). It is based on an incomplete orthogonal-

ization of the Krylov vectors in question, and gives a quasi-minimum backward error

solution over the Krylov subspace. In order to make the practical implementation of

IMinpert easy and convenient, we give another approximate version of the IMinpert

method: A-IMinpert. Theoretical properties of the latter algorithm are discussed. Nu-

merical experiments are reported to show the proposed method is effective in practice

and is competitive with the Minpert algorithm.
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1. Introduction

In many scientific and engineering computations, we want to solve the linear system

of equations

Ax = b, (1.1)

where A is an n× n real nonsymmetric matrix and b is an n-vector. A major class of meth-

ods for solving (1.1) is Krylov subspace type methods, and in these kinds of methods we

usually use the residual error as a stopping condition. However, when A is ill conditioned,

small residuals do not imply accurate approximate solutions. In order to overcome the

disadvantage of using the residual error as a stopping criteria, Kasenally [1] proposed GM-

BACK algorithm, which computes an approximate solution restricted to an affine space

while minimizing the backward perturbation norm of A:

min
xm∈x0+Km(A,r0)

‖△A‖F subject to (A−△A)xm = b. (1.2)

In the present setting, x0 is an initial solution estimate and r0 := b − Ax0; xm is the

approximate solution to (1.1) of the form xm = x0 + tm, where tm belongs to the Krylov
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subspace;△A and△b are aggregated into a matrix [△A,△b] which are known as the joint

backward perturbation. Throughout this paper we shall make use of the Frobenious norm.

Later, Kasenally and Simoncini, Cao Zhihao generalized the GMBACK method. They posed

the Minpert algorithm [2,4], where the following minimization problem was solved:

min
xm∈x0+Km(A,r0)

‖[△A,△b]‖F subject to (A−△A)xm = (b+△b). (1.3)

We note that both GMBACK and Minpert algorithm employ the Arnoldi process to com-

pute a matrix Vm = [v1, v2, . . . , vm] whose columns form an orthogonal basis for Km(A, r0)

[3], which means that both the methods use long recurrences. So work and storage per

step grow drastically as the number of steps increases, and the methods thus become im-

practical for large steps. A popular technique is to resort to truncated strategies which

only use a few rather than all the previously computed vectors in recurrences to get next

vectors and thus be significantly less expensive than their non-truncated versions at each

start. In this paper we will employ the incomplete orthogonalization [6,8,9] to compute Vm,

and then get a truncated versions of Minpert: IMinpert. The only difference between Min-

pert algorithm and IMinpert algorithm is that the basis vectors {vi}m1 are generated from

different processes. We found from many numerical examples that the new method usu-

ally can get comparable results with the Minpert algorithm and when the Minpert method

has better performances than restarted GMRES [2,4], the IMinpert also can present some

advantages over restarted GMRES method.

The outline of this paper is as follows. Section 2 gives a new algorithm: an incomplete

minimum perturbation algorithm. Implementation issues and another algorithm are intro-

duced in Section 3. Section 4 gives some numerical experiments. Finally, the conclusions

are provided in Section 5.

2. An incomplete minimum perturbation algorithm

2.1. Analysis of all joint backward perturbations

The following proposition parameterizes all perturbations for some approximation so-

lution.

Proposition 2.1. Suppose that m steps of the incomplete orthogonalization process have

been taken. By construction the incomplete orthogonalization process yields an upper Hes-

senberg matrix Hm ∈ R(m+1)×m which satisfies

AVm = Vm+1Hm. (2.1)

Thus, by (1.3), any approximate solution may be written as

xm = x0+ Vm ym for some ym ∈ Rm. (2.2)

Let βm = ‖r0‖2. The set of all joint backward perturbations S = [△A,△b] such that (A−
△A)xm = (b+△b) may be parameterized by R as

S = {Vm+1(Hm ym − βe1)‖[x T
m, 1]‖−2

2 [x
T
m, 1] + R(I −wwT ) : R ∈ Rn×(n+1)}, (2.3)


