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Abstract

In this paper, we first show that a generic m×n Fiedler matrix may have 2m−n−1−1

kinds of factorizations which are very complicated when m is much larger than n. In

this work, two special cases are examined, one is an m×n Fiedler matrix being factored

as a product of (m− n) Fiedler matrices, the other is an m× (m− 2) Fiedler matrix’s

factorization. Then we discuss the relation among the numbers of parameters of three

generic m× n, n× p and m× p Fiedler matrices, and obtain some useful results.
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1. Introduction

Fiedler matrix was introduced by Start and Wearer in [1], which comes from a discrete

time, Markov-like process where the number of states available may increase with time.

Such a process may represent a long term investment model where new investment vehi-

cles may be introduced as time evolves. It may also represent an epidemiological model

where new treatments leading to new stages in the disease course may be developed. The

size of the matrices reflects the number of available states. Since the matrices that we

examine represent transition matrices, thus the entries are nonnegative. In [1], the au-

thors discussed the properties of the Fiedler matrices, and investigated the factorization

of Fiedler matrix into Fiedler matrices. They also presented some open questions such as

when a Fiedler matrix is factorizable as a product of Fiedler matrices; and if factorizable,

are the factors unique? and if not, are the dimensions of the factors unique?

In this paper, we show that a generic m× n Fiedler matrix may have 2m−n−1 − 1 kinds

of factorizations, and as m is much larger than n the factorizations are very complicated.

2. Fiedler matrices

For the sake of brevity, all matrices in this paper are assumed to be real, and if the

Fiedler matrix A is m× n, it is understood that m > n.
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Definition 2.1. [3] Let A be an m×n matrix with m> n. Then A is called column-rhomboidal

if A satisfies both of the following conditions: the n× n submatrix of A consisting of the first n

rows is a nonsingular, lower triangular matrix, and the n× n submatrix of A consisting of the

last n rows is a nonsingular, upper triangular matrix.

Definition 2.2. [1] An m× n matrix with m > n is called a Fiedler matrix if A is column-

rhomboidal, centrosymmetric and if A has constant row sums.

Definition 2.3. [1] If A is an m×n column-rhomboidal matrix with exactly l diagonal bands

of length n, then A is called l-banded.

Lemma 2.1. [1] If A is an m× n Fiedler matrix, then A is l-banded, where l = m− n+ 1.

Moreover, the row sums of A all equal to n/m, and each entry of A is bounded above by n/m.

Lemma 2.2. [1] If A is an m× n, l-banded Fiedler matrix, then A has
 

(n− 1)
�
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l − 1
�£

independent parameters which was specified in Theorem 2.4 of [1].

By the properties of Fiedler matrix, we can consider the following example:

Example 2.1. A generic 6×2 Fiedler matrix A is 5-banded, and has 2 independent param-

eters:
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where 0< y1 ¶ 1 and 0¶ y2 ¶ 1.

Lemma 2.3. [3] If A and B are Fiedler matrices for which the product is defined, then AB is

also a Fiedler matrix.

By induction, we can easily get the following corollary.

Corollary 2.1. If A1,A2, · · · ,An are all Fiedler matrices for which the product is defined, then

A1A2 · · ·An is also a Fiedler matrix.

3. On factorizations

Theorem 3.1. Let A be a generic m× n Fiedler matrix. If A is factorizable, then the sum total

of its factorizations is no more than 2m−n−1 − 1, and the number of its factorizations with k

Fiedler matrices is no more than

�

m− n− 1
k− 1

�

, with 2¶ k ¶ m− n.

Proof. If A can be factored to a product of k Fiedler matrices with dimensions m ×
m1, m1×m2, · · · , mk−1×n, respectively, then mi ∈ S = {m− 1, m− 2, · · · , n+ 1}. Thus the


