A Hybrid Method for Nonlinear Least Squares Problems

Zhongyi Liu^{1,*} and Linping Sun^2

¹ School of Sciences, Hehai University, Nanjing 210098, China.

² Department of Mathematics, Nanjing University, Nanjing 210093, China.

Received November 29, 2005; Accepted (in revised version) May 18, 2006

Abstract. A negative curvature method is applied to nonlinear least squares problems with indefinite Hessian approximation matrices. With the special structure of the method, a new switch is proposed to form a hybrid method. Numerical experiments show that this method is feasible and effective for zero-residual, small-residual and large-residual problems.

Key words: Nonlinear least squares; switch; hybrid method; negative curvature; BP factorization.

AMS subject classifications: 65K05, 90C30

1 Introduction

Consider nonlinear least squares problems

$$\min_{x \in R^n} F(x) = \frac{1}{2} f(x)^T f(x) = \frac{1}{2} \sum_{i=1}^m f_i(x)^2$$
(1)

where $m \ge n$, $f : \mathbb{R}^n \to \mathbb{R}^m \in C^2(\Omega)$, $\Omega \in \mathbb{R}^n$ is an open convex set and $f_i(x)$ is the component function of f(x). The gradient of F(x) is

$$g(x) = J(x)^T f(x), \tag{2}$$

where J(x) is the Jacobian matrix of f(x), and the Hessian matrix is

$$G(x) = J(x)^T J(x) + \sum_{i=1}^m f_i(x) \nabla^2 f_i(x).$$

 Set

$$M(x) = J(x)^{T} J(x), \quad W(x) = \sum_{i=1}^{m} f_{i}(x) \nabla^{2} f_{i}(x).$$
(3)

Numer. Math. J. Chinese Univ. (English Ser.) 92 http://www.global-sci.org/nm

^{*}Correspondence to: Zhongyi Liu, School of Sciences, Hehai University, Nanjing 210098, China. Email: zhyi@hhu.edu.cn

Then

$$G(x) = M(x) + W(x).$$
(4)

Using the special structures of the object function F(x) and the Hessian matrix G(x), many effective methods have been developed. Among them a fundamental method is Gauss-Newton method which neglects the nonlinear term W(x) in G(x). In other words, a search direction is given by

$$J(x_k)^T J(x_k) p_k = -J(x_k)^T f(x_k).$$
(5)

The following theorem shows the convergence of the Gauss-Newton method.

Theorem 1.1. Suppose that $F(x) \in C^2(\Omega)$, x^* is a local minimum of (1), J(x) and G(x) are Lipschitz continuous in Ω , and for all $x \in \Omega$, J(x) is of full rank. If $||J(x)|| \leq \delta$, $||(J(x)^T J(x))^{-1}|| \leq \tau$, where δ and τ are constants, then Gauss-Newton iteration is well-defined for all $x \in \Omega$, and

$$\|x^{(k+1)} - x^*\| \le \|(J(x^*)^T J(x^*))^{-1} W(x^*)\| \|x^{(k)} - x^*\| + \mathcal{O}(\|x^{(k)} - x^*\|^2).$$
(6)

From the theorem above, whether Gauss-Newton method can succeed depends on whether the neglected term W(x) is important, that is to say, whether W(x) is a small part in G(x). The Gauss-Newton method has quadratic rate of convergence for zero residual problems where $f(x^*) = 0$ or $W(x^*) = 0$.

The search direction can also be obtained by

$$(J(x^{(k)})^T J(x^{(k)}) + \lambda_k I) p^{(k)} = -J(x^{(k)})^T f(x^{(k)})$$
(7)

where the nonnegative scalar λ_k is used to make $J(x^{(k)})^T J(x^{(k)}) + \lambda_k I$ positive definite. This formula is first proposed by Levenberg [4] and Marquardt [5], and is therefore called Levenberg-Marquardt method.

Another method takes advantage of W(x) in G(x), which is necessary for large residuals. One of this type of methods is due to Dennis-Gay-Welsh [6]. Since

$$\nabla^2 f_i(x^{(k+1)}) s^{(k)} = \nabla f_i(x^{(k+1)}) - \nabla f_i(x^{(k)}), \tag{8}$$

we have

$$f_i(x^{(k+1)})\nabla^2 f_i(x^{(k+1)})s^{(k)} = f_i(x^{(k+1)})(J_{k+1} - J_k)^T e_i,$$
(9)

which leads to

$$\sum_{i=1}^{m} f_i(x^{(k+1)}) \nabla^2 f_i(x^{(k+1)}) s^{(k)} = (J_{k+1} - J_k)^T f^{(k+1)}.$$
 (10)

Set $y^{\sharp} = (J_{k+1} - J_k)^T f^{(k+1)}$. Then W_{k+1} satisfies

$$W_{k+1}s = y^{\sharp}.\tag{11}$$

The Dennis-Gay-Welsh method gave the updating formula for W_k and scale strategy as follows:

$$W_{k+1} = \tau W_k + \frac{(y^{\sharp} - \tau W_k s)y^T + y(y^{\sharp} - \tau W_k s)^T}{y^T s} - \frac{(y^{\sharp} - \tau W_k s)^T s}{(y^T s)^2} yy^T,$$
(12)