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Abstract. In this paper, we study the semi-discrete mortar upwind finite volume element
method with the Crouzeix-Raviart element for the parabolic convection diffusion problems.
It is proved that the semi-discrete mortar upwind finite volume element approximations
derived are convergent in the H

1- and L
2-norms.
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1 Introduction

The mortar element method was first introduced by Bernardi, Maday and Patera in [2]. From
then on, this method as a special nonconforming domain decomposition technique has aroused
many researchers’ attention because different types of discretizations can be employed in different
parts of the computational domain. We refer to [2-5, 9, 10, 12, 18, 22] and the cited references
there for details.

In the mortar element method, the computational domain is first decomposed into a polygonal
partition. The meshes on different subdomains need not match across subdomain interfaces. The
basic idea of this method is to replace the strong continuity condition on the interfaces between
different subdomains by the so-called mortar condition. This condition guarantees the optimal
discretization schemes, that is, the global discretization error is bounded by the sum of the
optimal errors on different subdomains.

The finite volume element methods, also called the generalized difference methods in China,
are popular in computational fluid mechanics due to their conservation properties of the original
problems. In the past several decades, professors Li Ronghua et al. have systematically studied
the finite volume element methods and obtained many important results. Interested readers are
referred to the monographs [14, 15] for the general presentation of the finite volume element
methods, and to [1, 6, 7, 11, 13, 16, 17, 19, 20, 23] and the references therein for details.
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Recently, Ewing, Lazarov, Lin and Lin [9] have considered mortar finite volume element
approximations of the second-order self-adjoint elliptic problems. The discretization is based on
the Petrov-Galerkin method with a solution space of continuous piecewise linear functions over
each subdomain and a test space of piecewise constant functions. Bi and Li [3] have studied the
mortar finite volume element method based on the mortar Crouzeix-Raviart finite element space
and developed optimal order error estimates in the H1- and L2-norms.

In this paper, we construct and analyze the semi-discrete mortar upwind finite volume element
method with the Crouzeix-Raviart element for parabolic convection diffusion problems. We use
the mortar finite volume element method to discretize the diffusion term, and mortar upwind
difference schemes to discretize the convection term, and establish error estimates in the H1-
and L2-norms.

The remainder of this paper is organized as follows. In Section 2 we describe the parabolic
convection diffusion problems, give the triangulation Th of the computational domain Ω and
the dual partition T ∗

h of Th. Section 3 presents the semi-discrete mortar upwind finite volume
element method for the parabolic convection diffusion problems. In Section 4, we get the error
estimates in H1- and L2-norms.

In this paper, the notation of Sobolev spaces and associated norms and semi-norms are the
same as those in Ciarlet [8], and C denotes the positive constant independent of the mesh
parameter and the number of the subdomians, and may be different at different occurrences.

2 Notation and preliminaries

Consider the following parabolic convection diffusion problem on a bounded polygonal domain
Ω ⊂ R2 : 





ut −∇ · (A(x)∇u) + ∇ · (b(x)u) = f, x ∈ Ω, 0 < t ≤ T,

u(x, t) = 0, x ∈ ∂Ω, 0 < t ≤ T,

u(x, 0) = u0(x), x ∈ Ω.
(1)

We assume that A = (aij(x))
2
i,j=1 is a symmetric and uniformly positive definite matrix in Ω,

aij ∈ W 1,∞(Ω), 1 ≤ i, j ≤ 2, b(x) ∈ (W 1,∞(Ω))2. In this paper, in order to get the existence and
uniqueness of the approximation solution in Section 3, we further assume that ∇ · b ≥ 0.

In this paper, we consider a geometrically conforming version of the mortar upwind finite
volume element method, i.e., Ω is divided into non-overlapping polygonal subdomains Ωi, Ω =
∪N

i=1Ωi, with Ωi ∩ Ωj being an empty set or a vertex or an edge for i 6= j.

Each subdomain Ωi is triangulated to produce a regular mesh T i
h with the mesh parameter hi,

where hi is the largest diameter of the elements in T i
h . The triangulations of subdomains generally

do not align at the subdomain interfaces. Let Γij denote the open straight line segment which is
common to Ωi and Ωj and let Γ denote the union of all interfaces between the subdomains, i.e.,

Γ = ∪∂Ωi\∂Ω. We assume that the endpoints of each interface in Γ are vertices of T i
h and T j

h .
Let Th denote the global mesh ∪iT

i
h with h = max

1≤i≤N
hi.

Since the triangulations on two adjacent subdomains are independent, the interface Γij =
Ωi∩Ωj is provided with two different and independent 1-D meshes, which are denoted by T i

h(Γij)

and T j
h (Γij), respectively. We define one of the sides of Γij as a mortar one, the other as a non-

mortar one, denoted by γi and δj, respectively. Let ΩM(Γij) denote the mortar domain of Γij

and ΩNM(Γij) the non-mortar domain of Γij . Define uM
γi

and uNM
δj

to be the traces of u|ΩM(Γij )

and u|ΩNM(Γij )
on Γij , respectively. Define CR nodal points as the midpoints of the edges of


