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BOUNDARY ELEMENT APPROXIMATION OF THE

SEMI-DISCRETE PARABOLIC VARIATIONAL

INEQUALITIES OF THE SECOND KIND ∗

Ding Rui (¶H) Jiang Meiqun(ö{+) Peng Daping($�±)

Abstract The boundary element approximation of the parabolic variational inequal-
ities of the second kind is discussed. First, the parabolic variational inequalities of
the second kind can be reduced to an elliptic variational inequality by using semi-
discretization and implicit method in time; then the existence and uniqueness for the
solution of nonlinear non-differentiable mixed variational inequality is discussed. Its
corresponding mixed boundary variational inequality and the existence and uniqueness
of its solution are yielded. This provides the theoretical basis for using boundary ele-
ment method to solve the mixed variational inequality.
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1 Introduction

We consider the parabolic variational inequalities of the second kind with non-differentiable
terms. Many works[1,6,7,9,10] related to this kind of parabolic variational inequalities have been
done, for example, the combination of semi-discretization in time and finite element method [7];
generalized truncation method[1], etc. All these methods have the shortcoming of huge compu-
tation, especially for a long time problem. It’s oppressive for the method of one finite element
computation at each time step. In this paper. Following the frame of reference [4], we still use
semi-discrete in time, then apply boundary element method to its equivalent variational equa-
tion. Then the original problem can be transferred into a mixed boundary variational inequality.
By this way, we reach the aim to decrease the dimension of discussed problem and simplify the
computation. The rest of the paper is structured as follows. In Section 2 we present the parabolic
variational inequalities of the second kind and the corresponding equivalent unilateral boundary
problem. In Section 3, the boundary integral equation by introducing homogeneous Helmholtz
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equation is established. In section 4, using boundary integral equation, we transferred the mixed
variational inequality defined in spatial domain to the mixed boundary variational inequality in-
tegral on boundary and proved the existence and uniqueness of the solution of its corresponding
boundary variational inequality. Finally, the numerical example is given.

2 The Parabolic Variational Inequality

Let Ω be a bounded open domain in R2 with a smooth boundary Γ. Time interval is [0,T ],
where 0 < T < ∞. For u, v ∈ V = H1(Ω), we define

The bilinear form ã (u, v) =
∫

Ω

∇u · ∇vdx +
∫

Ω

uvdx.

The functional j(v) =
∫

Γ

c |v|ds, where c > 0 is a given constant.

The linear form L(v) =
∫

Ω

f̃vdx.

Ṽ = {Trace of v on Γ ∈ V } =
∗
H 1/2(Γ),

∗
H −1/2(Γ) =

{
µ ∈ H−1/2(Γ),

∫
Γ

µds = 0
}

.

Here Hm(Γ) and Hα(Γ) denote the Sobolev spaces with the order of integer and fraction
respectively, and suppose f ∈ H1(Γ). It is easy to see that Ṽ is a closed linear subspace of
H1(Γ).

Consider the following parabolic variational inequalities of the second kind [1,6,7]
Find u : [0, T ] → V, such that,

(
∂u

∂t
, v − u) + ã(u, v − u) + j(v)− j(u) ≥ (f̃ , v − u), ∀v ∈ V, a. e. t > 0,

u(x, 0) = u0(x), ∀x ∈ Ω

(2.1)

where f̃ , f̃t ∈ C([0, T ]× Ω̄), u0 ∈ V ∩W 2
∞(Ω).

Remark From references [1, 7] for any given T > 0, the variational inequality (2.1) has a
unique solution. Moreover, the map u(·, t) → V is continuous, ut ∈ L2([0, T ], V ),and

sup
0≤t≤T

(
‖u(·, t)‖H2(Ω) + ‖ut(·, t)‖L∞(Ω)

)
< ∞.

We take semi-discrete approximation and implicit method in time for (2.1). Let time step

be ∆t =
T

N
, denote un = u(x, tn), where tn = n∆t, (n = 0, 1, . . . N). Let un be the approximate

solution at time tn, we compute the approximate solution un+1 at time tn+1

(
un+1 − un

∆t
, v − un+1) + ã(un+1, v − un+1) + j(v)− j(un+1) ≥ (f̃n+1, v − un+1). (2.2)

According to [10], the stability of (2.2) is unconditional. Rewrite (2.2) as

ã(un+1, v − un+1) +
1

∆t
(un+1, v − un+1) + j(v)− j(un+1) ≥ (f̃n+1 +

1
∆t

un, v − un+1). (2.3)


