COMPONENTWISE CONDITION NUMBERS FOR GENERALIZED MATRIX INVERSION AND LINEAR LEAST SQUARES*

Wei Yimin(魏益民) Xu Wei (许威) Qiao Sanzheng(乔三正) Diao Huaian(刁怀安)

Abstract We present componentwise condition numbers for the problems of Moore-Penrose generalized matrix inversion and linear least squares. Also, the condition numbers for these condition numbers are given.

Key words Condition numbers, componentwise analysis, generalized matrix inverses, linear least squares.

AMS(2000) subject classifications 15A12, 65F20, 65F35

1 Introduction

Condition number is a measurement of the sensitivity of a problem to the perturbation in its inputs. In general, consider a function f(x). Suppose that the input x is perturbed by Δx . The condition number κ for the problem f(x) quantifies the magnification of the relative errors caused by the perturbation. Specifically, κ satisfies

$$\frac{f(x + \Delta x) - f(x)|}{|f(x)|} \le \kappa \frac{|\Delta x|}{|x|}.$$

Assuming $|\Delta x| \leq \epsilon |x|$, we can define the condition number

$$\kappa = \lim_{\epsilon \to 0^+} \sup_{|\Delta x| \leq \epsilon \, |x|} \frac{|f(x + \Delta x) - f(x)|}{\epsilon \, |f(x)|}$$

In the problem of inverting a nonsingular matrix A, the condition number

$$\kappa(A) = \|A\| \, \|A^{-1}\|$$

 ^{*} The first author is supported by the NSF of China under grant 10471027 and Shanghai Education Commission.
 Received: Sep. 1, 2004.

represents the ratio between the relative errors in A and its inverse:

$$\frac{\|(A + \Delta A)^{-1} - A^{-1}\|}{\|A^{-1}\|} \le \frac{\kappa(A)}{1 - \kappa(A) \|\Delta A\| / \|A\|} \frac{\|\Delta A\|}{\|A\|},$$

assuming the perturbation ΔA is small relative to A [4]. In this paper, $\|\cdot\|$ denotes the 2norm. The condition number for solving a nonsingular system of linear equations Ax = b is also $\kappa(A) = \|A\| \|A^{-1}\|$ in that

$$\frac{\|(A + \Delta A)^{-1}(b + \Delta b) - A^{-1}b\|}{\|A^{-1}b\|} \le \kappa(A) \left(\frac{\|\Delta A\|}{\|A\|} + \frac{\|\Delta b\|}{\|b\|}\right) + O(\epsilon^2),$$

for ΔA and Δb such that $\|\Delta A\| \leq \epsilon \|A\|$, $\|\Delta b\| \leq \epsilon \|b\|$, and $A + \Delta A$ is nonsingular [4].

In the general case when A can be rectangular or rank-deficient, the Moore-Penrose generalized inver A^{\dagger} of A is introduced. It can be defined as the unique matrix satisfying the follow four matrix equations for X [2]:

$$AXA = A$$
, $XAX = X$, $(AX)^{\mathrm{T}} = AX$, $(XA)^{\mathrm{T}} = XA$.

The condition number for the generalized matrix inversion is given by $||A|| ||A^{\dagger}||$ [6]. For the problem of linear least squares

$$\min \|b - Ax\|,\tag{1.1}$$

the minimal norm solution is $A^{\dagger}b$ and the condition number is approximately $||A|| ||A^{\dagger}||$ when the residual r = b - Ax is small and $||A||^2 ||A^{\dagger}||^2$ otherwise [6]. The condition numbers for weighted Moore-Penrose inverse and weighted least squares are discussed in [8, 9]. The condition numbers for structured least squares are given in [10].

The above condition numbers are called normwise condition numbers, because they are in the forms of matrix norms. The normwise analysis has two major drawbacks: It is norm dependent; it gives no information about the sensitivity of individual components [7]. Rohn [7] presented componentwise condition numbers for matrix inversion and nonsingular system of linear equations. Let $A = [A_{ij}]$. Denoting $|A| = [|A_{ij}|]$, we say $|A| \leq |B|$ when $|A_{ij}| \leq |B_{ij}|$ for all *i* and *j*. The componentwise condition number for matrix inversion is defined by

$$c_{ij}(A) = \lim_{\epsilon \to 0+} \sup \left\{ \frac{|(A + \Delta A)^{-1} - A^{-1}|_{ij}}{\epsilon |A^{-1}|_{ij}}, \ |\Delta A| \le \epsilon |A| \right\},\$$

for nonsingular $A + \Delta A$. Rohn proposed

$$c_{ij}(A) = \frac{(|A^{-1}| |A| |A^{-1}|)_{ij}}{|A^{-1}|_{ij}}.$$
(1.2)

For the nonsingular system Ax = b of linear equations, Rohn defined

$$c_i(A,b) = \lim_{\epsilon \to 0+} \sup \left\{ \frac{|(A+\Delta A)^{-1}(b+\Delta b) - A^{-1}b|_i}{\epsilon |A^{-1}b|_i}, \ |\Delta A| \le \epsilon |A|, \ |\Delta b| \le \epsilon |b| \right\},$$