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Abstract. This paper investigates a solution technique for solving a two-dimensional
Kuramoto-Sivashinsky equation discretized using a finite difference method. It con-
sists of an order reduction method into a coupled system of second-order equations,
and to formulate the fully discretized, implicit time-marched system as a Lyapunov-
Sylvester matrix equation. Convergence and stability is examined using Lyapunov
criterion and manipulating generalized Lyapunov-Sylvester operators. Some numeri-
cal implementations are provided at the end to validate the theoretical results.
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1 Introduction

Kuramoto-Sivashinsky (KS) equation is one of the well known models for for chaotic

spatially extended systems [9]. The KS equation arises in the description of stability of

flame fronts, reaction-diffusion systems and many other physical settings [10, 12]. Sim-

ilarly to [20], in the context of the present paper the two-dimensional generalized KS
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equation describes the evolution of a (2+1)-dimensional surface defined as a function

on a two-dimensional plane and is growing in the direction perpendicular to that plane.

Therefore, the present paper is devoted to the development of a computational method

based on two-dimensional finite difference scheme to approximate the solution of the

nonlinear KS equation

∂u

∂t
=q∆u−κ∆2u+λ‖∇u‖2, ((x,y),t)∈Ω×(t0,+∞), (1.1)

with initial conditions

u(x,y,t0)= ϕ(x,y) ; (x,y)∈Ω (1.2)

and boundary conditions

∂u

∂η
(x,y,t)=0; ((x,y),t)∈∂Ω×(t0,+∞), (1.3)

on a rectangular domain Ω=[L0,L1]×[L0,L1] in R2, t0≥0 is a real parameter fixed as the

initial time. ∂
∂t is the time derivative, ∇ is the space gradient operator and ∆= ∂2

∂x2 +
∂2

∂y2

is the Laplace operator in R2, q,κ,λ are real parameters. ϕ and ψ are twice differentiable

real valued functions on Ω.

We propose to apply an order reduction of the derivation and thus to solve a coupled

system of equation involving second order differential operators. We set v=qu−κ∆u and

thus we have to solve the system





∂u
∂t =∆v+λ‖∇u‖2, (x,y,t)∈Ω×(t0,+∞)

v=qu−κ∆u, (x,y,t)∈Ω×(t0,+∞)

(u,v)(x,y,t0)=(ϕ,ψ)(x,y), (x,y)∈Ω

−→∇ (u,v)(x,y,t)=0, (x,y,t)∈∂Ω×(t0,+∞).

(1.4)

The Kuramoto-Sivashinsky equation (KS) is one of the most famous equations in math-

physics for many decades. It has its origin in the work of Kuramoto since the 70-th decade

of the 20-th century in his study of reaction-diffusion equation [21]. The equation was

then considered by Sivashinsky in modeling small thermal diffusion instabilities for lam-

inar flames and modeling the reference flux of a film layer on an inclined plane [32, 33].

Since then the KS equation has experienced a growing development in theoretical mathe-

matics, numerical as well as physical mechanics, nonlinear physics, hydrodynamics [28],

in combustion theory, chemistry, plasma physics, particle distributions advection, surface

morphology, ...etc.

For example, in [1], an anisotropic version of the KS equation has been proposed lead-

ing to global resolutions of the equation on rectangular domains. Sufficient conditions

were given for the existence of global solution. See for example [6–13].


