Existence and Nonexistence for Semilinear Equations on Exterior Domains

IAIA Joseph A.*

University of North Texas, P.O. Box 311430, Denton, Texas 76203-5017, USA.

Received 5 January 2016; Accepted 20 August 2017

Abstract. In this paper we prove the existence of an infinite number of radial solutions of $\Delta u + K(r)f(u) = 0$ on the exterior of the ball of radius R > 0 centered at the origin in \mathbb{R}^N where f is odd with f < 0 on $(0,\beta)$, f > 0 on (β,δ) , $f \equiv 0$ for $u > \delta$, and where the function K(r) is assumed to be positive and $K(r) \to 0$ as $r \to \infty$. The primitive $F(u) = \int_0^u f(s) ds$ has a "hilltop" at $u = \delta$ which allows one to use the shooting method to prove the existence of solutions.

AMS Subject Classifications: 34B40, 35B05

Chinese Library Classifications: O175.8, O175.25

Key Words: Semilinear; hilltop.

1 Introduction

In this paper we study radial solutions of:

 $\Delta u + K(r)f(u) = 0 \qquad \text{in } \Omega, \tag{1.1}$

u = 0 on $\partial \Omega$, (1.2)

 $u \to 0$ as $|x| \to \infty$, (1.3)

where $x \in \Omega = \mathbb{R}^N \setminus B_R(0)$ is the complement of the ball of radius R > 0 centered at the origin. We assume there exist β, δ with $0 < \beta < \delta$ such that $f(0) = f(\beta) = f(\delta) = 0$, and $F(u) = \int_0^u f(s) ds$ where:

f is odd and locally Lipschitz, f < 0 on $(0,\beta)$, f > 0 on (β,δ) , $f \equiv 0$ on (δ,∞) , and $F(\delta) > 0$. (1.4)

*Corresponding author. *Email address:* iaia@unt.edu (Joseph A. Iaia)

http://www.global-sci.org/jpde/

In addition we assume:

$$f'(\beta) > 0$$
 if $N > 2.$ (1.5)

We note it follows that $F(u) = \int_0^u f(s) ds$ is even (since *f* is odd) and has a unique positive zero, γ , (since f < 0 on $(0,\beta)$, f > 0 on (β,δ) , and $F(\delta) > 0$) with $\beta < \gamma < \delta$ such that:

F < 0 on $(0,\gamma), F > 0$ on (γ, ∞) , and F is strictly monotone on $(0,\beta)$ and on (β,δ) . (1.6)

In earlier papers [1, 2] we studied (1.1), (1.3) when $\Omega = \mathbb{R}^N$ and $K(r) \equiv 1$. In [3] we studied (1.1) and (1.3) with $K(r) \equiv 1$ and $\Omega = \mathbb{R}^N \setminus B_R(0)$. We proved existence of an infinite number of solutions - one with exactly *n* zeros for each nonnegative integer *n* such that $u \rightarrow 0$ as $|x| \rightarrow \infty$. Interest in the topic for this paper comes from recent papers [4–6] about solutions of differential equations on exterior domains.

When *f* grows superlinearly at infinity i.e. $\lim_{u\to\infty} f(u)/u = \infty$, and $\Omega = \mathbb{R}^N$ then the problem (1.1), (1.3) has been extensively studied [7–11]. The type of nonlinearity addressed here has not been studied as extensively [1,3].

Since we are interested in radial solutions of (1.1)-(1.3) we assume that u(x) = u(|x|) = u(r) where $x \in \mathbb{R}^N$ and $r = |x| = \sqrt{x_1^2 + \dots + x_N^2}$ so that by the chain rule *u* solves:

$$u''(r) + \frac{N-1}{r}u'(r) + K(r)f(u(r)) = 0$$
 on (R,∞) , where $R > 0$.

We now let b > 0 and we proceed to examine solutions of:

$$u''(r) + \frac{N-1}{r}u'(r) + K(r)f(u(r)) = 0 \quad \text{on } (R,\infty), \text{ where } R > 0, \tag{1.7}$$

$$u(R) = 0, \ u'(R) = b > 0.$$
 (1.8)

We will show that for appropriate values of *b* we also have $\lim_{r \to \infty} u(r, b) = 0$.

We will occasionally denote the solution of the above by u(r,b) in order to emphasize the dependence on the initial parameter *b*. Also throughout this paper differentiation will always be with respect to the variable *r*.

We will assume that: there exist constants $c_1 > 0$, $c_2 > 0$, and $\alpha > 0$ such that:

$$c_1 r^{-\alpha} \le K(r) \le c_2 r^{-\alpha}$$
 for $0 < \alpha < 2(N-1)$ on $[R,\infty)$. (1.9)

In addition, we assume: *K* is differentiable and \exists constants d > 0, D > 0 s. t.

$$0 < d \le \frac{rK'}{K} + 2(N-1) \le D$$
 on $[R,\infty)$. (1.10)

Note that (1.10) implies $r^{2(N-1)}K(r)$ is non-decreasing since:

$$(r^{2(N-1)}K(r))' = r^{2N-3}K\left(2(N-1) + \frac{rK'}{K}\right) > 0.$$

300