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1 Introduction

Let (E,d) be a metric space equipped with a σ-field B such that the distance d is B⊗B-

measurable. Given p ≥ 1 and two probability measure µ and ν on E, the Wasserstein

distance is defined by

Wd
p (µ,ν)= inf

π∈(µ,ν)

(∫ ∫
d(x,y)pdπ(x,y)

)1/p

,

where C(µ,ν) denotes the totality of probability measures on E×E with the marginal µ

and ν. In many practical situations, it is quite useful to find an upper bound for the metric

W p,d(µ,ν), where a fully satisfactory one given by Talagrand [1] is the relative entropy of

ν with respect to µ

H(ν|µ)=





∫
ln

dν

dµ
dν, ν≪µ,

+∞, otherwise,
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where ν ≪ µ means that ν is absolutely continuous with respect to µ. We say that the

probability measure µ on (E,d) satisfies the Lp transportation cost inequality (TCI) with

a constant C≥0 if

Wd
p(µ,ν)≤

√
2CH(ν|µ)

for any probability measure ν. As usual, we write µ∈Tp(C) for this relation.

Concentration inequalities and their applications have become an integral part of

modern probability theory. One of the powerful tools to show such concentration esti-

mates for diffusions is TCI, where quadratic TCI is unique in its advantages and related to

the log-Sobolev inequality, hypercontractivity, Poincaré inequality, inf-convolution, and

Hamilton-Jacobi equations, for details, see, e.g., Bobkov and Gotze [2], Gozlan et al. [3]

and Otto and Villani [4]. There are a lot of works on this subject, beginning by the con-

tributions of Talagrand [1]. In [5] Pal showed that probability laws of certain multidi-

mensional semimartingales satisfy quadratic TCI, in [6] Üstünel proved TCI for the laws

of diffusion processes where the drift depends on the full history. In [7], Djellout et al.

established the T2 transportation inequality with respect to the Cameron-Martin metric

by means of the Girsanov transform. Using Girsanov theorem, Bao and Yuan [8] and Bao

et al. [9] established TCIs for neutral functional SDEs and Saussereau [10] established the

transportation cost inequality for a class of SDEs driven by a fractional Brownian motion

with Hurst parameter H>1/2.

On the other hand, multivalued equations attracted the interest of many researchers

recently. See Krée [11], Cépa [12], Bensoussan and Rascanu [13], Céping [14], and Zhang

[15]. Inspired with these works, we are interested in multivalued stochastic evolution

equations. To our best knowledge, there is no work reported on the TCIs for the solution

of multivalued stochastic evolution equations. To close the gap in this paper, we are

desired to establish TCIs for the solution of these equations by means of the Girsanov

transform under the uniform metric and L2 metric.

The rest of this paper is organized as follows. In Section 2, we introduce the multival-

ued stochastic evolution equation. In Section 3, we state and prove our main results.

2 Multivalued stochastic evolution equations

Let V be a separable and reflexive Banach space which is continuously and densely em-

bedded in a separable Hilbert space H. Then we have an evolution triplet (V,H,V∗)
satisfying

V⊂H=H∗⊂V∗,

where V∗ is the dual space of V and we identify H with its own dual H∗.

Denote by |·|V , |·|H , |·|V∗ the norms in V, H and V∗ respectively; by 〈·,·〉H the inner

product in H, and V〈·,·〉V∗ the dual relation between V and V∗. In particular, if v∈V and

h∈H, then

V〈v,h〉V∗ = 〈v,h〉H .


