doi: 10.4208/jpde.v30.n3.3 September 2017

## Semi-linear Elliptic Equations on Graph

ZHANG Dongshuang\*

Department of Mathematics, Renmin University of China, Beijing 100872, China

Received 20 November 2016; Accepted 22 June 2017

**Abstract.** Let G = (V, E) be a locally finite graph,  $\Omega \subset V$  be a finite connected set,  $\Delta$  be the graph Laplacian, and suppose that  $h: V \to \mathbb{R}$  is a function satisfying the coercive condition on  $\Omega$ , namely there exists some constant  $\delta > 0$  such that

$$\int_{\Omega} u(-\Delta+h) u \mathrm{d}\mu \ge \delta \int_{\Omega} |\nabla u|^2 \mathrm{d}\mu, \quad \forall u : V \to \mathbb{R}.$$

By the mountain-pass theorem of Ambrosette-Rabinowitz, we prove that for any p > 2, there exists a positive solution to

$$-\Delta u + hu = |u|^{p-2}u$$
 in  $\Omega$ .

Using the same method, we prove similar results for the *p*-Laplacian equations. This partly improves recent results of Grigor'yan-Lin-Yang.

AMS Subject Classifications: 34B45, 35A15, 58E30

Chinese Library Classifications: O175.27

Key Words: Sobolev embedding; Yamabe type equation; Laplacian on graph.

## 1 Introduction and main results

Let G = (V, E) be a locally finite graph, where *V* denotes the vertex set and *E* denotes the edge set. The weight of *xy* is supposed that  $w_{xy} > 0$  and  $w_{xy} = w_{yx}$ , where  $xy \in E$ . Here and throughout this paper we write  $y \sim x$  if  $xy \in E$ . Let  $deg(x) = \sum_{y \sim x} w_{xy}$  be the degree of  $x \in V$ . We can define the  $\mu$ -Laplacian on *G* and the associated gradient form as

$$\Delta u(x) = \frac{1}{\mu(x)} \sum_{y \sim x} w_{xy}(u(y) - u(x)), \tag{1.1}$$

http://www.global-sci.org/jpde/

<sup>\*</sup>Corresponding author. Email address: Zhangds@ruc.edu.cn (D. Zhang)

D.S. Zhang / J. Partial Diff. Eq., 30 (2017), pp. 221-231

$$\Gamma(u,v)(x) = \frac{1}{2\mu(x)} \sum_{y \sim x} w_{xy}(u(y) - u(x))(v(y) - v(x)),$$
(1.2)

where  $\mu: V \to \mathbb{R}$  is a finite measure, and  $\Gamma(u,u)$  is written as  $\Gamma(u)$ . We can also define the length of  $\nabla u(x)$  as

$$|\nabla u|(x) = \sqrt{\Gamma(u)(x)} = \left(\frac{1}{2\mu(x)} \sum_{y \sim x} w_{xy}(u(y) - u(x))^2\right)^{1/2}.$$
 (1.3)

For any function  $u: V \to \mathbb{R}$ , we denote,

$$\int_{\Omega} u d\mu = \sum_{x \in \Omega} \mu(x) u(x).$$
(1.4)

In this note, we consider existence results for the semi-linear elliptic equation

$$-\Delta u + hu = |u|^{p-2}u \qquad \text{in }\Omega, \tag{1.5}$$

where *h* satisfies the coercive condition on  $\Omega$ , namely, there exists some constant  $\delta > 0$  such that

$$\int_{\Omega} u(-\Delta+h)u \mathrm{d}\mu \ge \delta \int_{\Omega} |\nabla u|^2 \mathrm{d}\mu.$$
(1.6)

for all functions  $u: V \to \mathbb{R}$  with zero boundary condition.

Recently the equation (1.5) has been studied by Grigor'yan-Lin-Yang [1] in the case that  $h = -\alpha$  is a constant. They proved that if  $\alpha < \lambda_1(\Omega)$ , then for any p > 2, there exists a positive solution to the equation

$$\begin{cases} -\Delta u - \alpha u = |u|^{p-2}u & \text{ in } \Omega^0, \\ u = 0 & \text{ on } \partial\Omega, \end{cases}$$
(1.7)

where  $\lambda_1(\Omega)$  is the first eigenvalue of the Laplacian with respect to the Dirichlet boundary condition, and it reads

$$\lambda_1(\Omega) = \inf_{\substack{u \neq 0, u \mid_{\partial \Omega = 0}}} \frac{\int_{\Omega} |\nabla u|^2 d\mu}{\int_{\Omega} u^2 d\mu}$$
(1.8)

where  $\partial\Omega$  is the boundary of  $\Omega$ , namely  $\partial\Omega = \{x \in \Omega : \exists y \notin \Omega \text{ such that } xy \in E\}$ . Moreover the interior of  $\Omega$  is denoted by  $\Omega^0 = \Omega \setminus \partial\Omega$ .

Our first result is the following:

**Theorem 1.1.** Let G = (V, E) be a locally finite graph,  $\Omega \subset V$  be a finite connected set with  $\Omega^0 \neq \emptyset$ . Suppose that  $h: V \to \mathbb{R}$  satisfies the coercive condition, namely there exists some constant  $\delta > 0$  such that for all  $u \in W_0^{1,2}(\Omega)$ 

$$\int_{\Omega} u(-\Delta+h) u \mathrm{d}\mu \geq \delta \int_{\Omega} |\nabla u|^2 \mathrm{d}\mu.$$

222