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Abstract. We study a nonlinear elliptic problem with non-local boundary conditions
and L1-data. We prove an existence and uniqueness result of an entropy solution.
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1 Introduction and assumptions

Let Ω be an open bounded domain in RN , N≥2 such that ∂Ω is Lipschitz and ∂Ω=ΓD∪ΓN
with ΓD∩ΓN =∅. Our aim is to study the following problem

P(β,ρ, f ,d)



β(u)−∇·a(x,∇u)= f in Ω,

u=0 on ΓD,

ρ(u)+
∫

ΓN

a(·,∇u)·η=d

u≡cste

 on ΓN ,

where η is the unit outward normal vector on ∂Ω, β and ρ are two continuous non de-
creasing functions on R such that

D(β)=D(ρ)= Im(β)= Im(ρ)=R. (1.1)
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a is a Leray-Lions operator, f is a function in L1(Ω) and d∈R.
Recall that a Leray-Lions type operator is a Carathéodory function a(x,ξ) :Ω×RN−→

RN (that is a(x,ξ) is continuous with respect to ξ for a.e. x ∈Ω and measurable with
respect to x for every ξ∈RN) and there exists p∈ (1,N) such that:

• There exists a positive constant C such that

|a(x,ξ)|≤C(j(x)+|ξ|p−1), (1.2)

for almost every x∈Ω and for every ξ ∈RN , where j is a nonnegative function in
Lp′(Ω), with 1/p+1/p′=1.

• The following inequalities hold

(a(x,ξ)−a(x,η))·(ξ−η)>0, (1.3)

for almost every x∈Ω and for every ξ,η ∈RN , with ξ 6= η, and there exists C′> 0
such that

1
C′
|ξ|p≤ a(x,ξ)·ξ, (1.4)

for almost every x∈Ω, and for every ξ∈RN .

Non-local boundary value problems of various kinds for partial differential equations
are of great interest by now in several fields of application. In a typical non-local problem,
the partial differential equation (resp. boundary conditions) for an unknown function u
at any point in a domain Ω involves not only the local behavior of u in a neighborhood of
that point but also the non-local behavior of u elsewhere in Ω. For example, at any point
in Ω the partial differential equation and/or the boundary conditions may contains inte-
grals of the unknown u over parts of Ω, values of u elsewhere in D or, generally speaking,
some non-local operator on u. Beside the mathematical interest of nonlocal conditions,
it seems that this type of boundary condition appears in petroleum engineering model
for well modeling in a 3D stratified petroleum reservoir with arbitrary geometry (see [1]
and [2]).

In the main problem considered in this paper, in contrast of the standard case where
the condition on the boundary is given on the local values of the flux, nonlocal boundary
conditions acts on the average of the flux on the boundary. More precisely, in addition to
Dirichlet boundary condition on ΓD, i.e.

u=0, on ΓD, (1.5)

u is asking to satisfy the following nonlocal condition

ρ(u)+
∫

ΓN

a(x,∇u)·η=d on ΓN . (1.6)


