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Abstract. This paper consider the Cauchy problem for a class of 1D generalized Boussi-
nesq equations us — Uy — Uxxtt+Uxxxx+Uxxxxtt = f (1) xx. By utilizing the potential well
method and giving some conditions on f(u), we obtain the invariance of some sets
and obtain the threshold result of global existence and nonexistence of solutions.
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1 Introduction

In this paper, our main purpose is to study the Cauchy problem for the generalized
Boussinesq equations

utt_uxx_uxxtt"‘”xxxx"‘”xxxxtt:f(u)xx/ x€R, t>0, (1.1)
U(X,O):uo(X), uf(xro):ul (X), xeR. (12)

Here we give some assumptions on f(u) as follows

(Hy) flu)==lul?, p>4and p#2k, k=34,
or f(u)=—|ulP~'u, p>4and p#2k+1, k=23, -,

(Hy)  f(u)=+u?*,  or f(u)=—u®u, k=1,2,-.
*Corresponding author. Email addresses: yanyee ny07@126.com, 349773509@qq.com (Y. Niu)
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In 1872, ]. Boussinesq [1] proposed the classical Boussinesq equation
U= _’Yuxxxx+uxx+(u2)xx~ (1.3)

This equation describes the propagation of small amplitude long waves on the surface of
shallow water and gives a scientific explanation of the existence to solitary waves. The
following nonlinear partial differential equation

Uttt Uxxxx :a(ui)x, (1.4)

was derived in the study of weakly nonlinear analysis of elasto-plastic-microstructure
models for longitudinal motion of elasto-plastic bar [2], where a is a constant.

Instead of the term uyyyy, Eq. (1.3) became the famous improved Boussinesq equation
(the IBq equation)

Upp— Uyy — Uxxtt = (uz)xx/ (1.5)

which describes the propagation of long waves on shallow water as well. Makhankov [3]
pointed out that the IBq equation

utt—Au—Autt:A(uz) (16)

can be given by starting with the exact hydro-dynamical set of equations in plasma, and a
modification of the IBq equation analogous to the modified Korteweg-de Vries equation
yields

Mtt—AM—AMtt:A<M3). (17)

Eq. (1.7) is the so-called IMBq (modified IBq) equation. Wang and Chen [4, 5] gave the
local and global solution and the solution which blows up in finite time. Further, they
considered the Cauchy problem of the multidimensional generalized IMBq equation

utt—Au—Autt:Af(u), (18)

and obtained the golbal existence of small amplitude solution.
Schneider [6] investigated the following nonlinear wave equation

Upp— Uxyx _uxxtt_;uuxxxx"i‘uxxxxtt = (uz)xx/ (19)

which describes the water wave problem with surface tension. The model can also be
formally derived from the two-dimensional water wave problem. The Eq. (1.9) is called
“bad” Boussinesq equation as >0 and “good” Boussineq equation as y <0. The classical
Boussinesq equation can be extended to a more natural model [7]

utt_uxx_(V‘i‘l)uxxxx"i‘uxxxxxx:<u2)xx- (1-10)



