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Abstract. In this paper, we prove some sharp non-existence results for Dirichlet prob-
lems of complex Hessian equations. In particular, we consider a complex Monge-
Ampère equation which is a local version of the equation of Kähler-Einstein metric.
The non-existence results are proved using the Pohožaev method. We also prove exis-
tence results for radially symmetric solutions. The main difference of the complex case
with the real case is that we don’t know if a priori radially symmetric property holds
in the complex case.
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1 Introduction

In [1], Tso considered the following real k-Hessian equation:

Sk(uαβ)=(−u)p on Ω, u=0 on ∂Ω. (1.1)

Ω denotes a domain inside Rd. k is an integer satisfying 1≤ k ≤ d. p is a positive real

number. Sk(uαβ) denotes the k-th symmetric polynomial of eigenvalues of the Hessian

matrix (uαβ)=
(

∂2u
∂xα∂xβ

)

. The following formula is well known:

Sk(uαβ)=
1

k! ∑
1≤i1,...,jk≤n

δi1...ik

j1 ...jk
ui1 j1 . . .uik jk .
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Here we used the generalized Kronecker symbol δ
i1 ...ik

j1 ...jk
, which is equal to the sign of per-

mutation from {i1 . . .ik} to {j1 . . . jk} if the two sets of indices are the same or is equal to 0

otherwise. Tso ( [1]) proved following result.

Theorem 1.1. ([1]) Let Ω be a ball and

γ̃(k,d)=

{

(d+2)k
d−2k 1≤ k< d

2 ,

∞ d
2 ≤ k<d.

Then (i) (1.1) has no negative solution in C1(Ω̄)∩C4(Ω) when p ≥ γ̃(k,d); (ii) It admits a

negative solution which is radially symmetric and is in C2(Ω̄) when 0 < p < γ̃(k,d), p is not

equal to k.

The non-existence result above was proved by the Pohožaev method. In this article,

we first generalize Tso’s result to case of complex k-Hessian equation. From now on, let

BR denote the ball of radius R in Cn. We consider the following equation

Sk(uij̄)=(−u)p on BR, u=0 on ∂BR. (1.2)

where the complex k-Hessian operator Sk(uij̄) is the k-th symmetric polynomial of eigen-

values of the complex Hessian matrix (uij̄)=
(

∂2u
∂zi∂z̄j

)

, or equivalently we have the follow-

ing formula:

Sk(uij̄)=
1

k! ∑
1≤i1,...,jk≤n

δi1...ik

j1 ...jk
ui1 j̄1

. . .uik j̄k
.

Our first result is

Theorem 1.1. Define γ(k,n)= (n+1)k
n−k = γ̃(k,2n). Then (i) (1.2) has no nontrivial nonpositive

solution in C2(B̄R)∩C4(BR) when p≥γ(k,n); (ii) It admits a negative solution which is radially

symmetric and is in C2(B̄R) when 0< p<γ(k,n) and p is not equal to k.

Remark 1.1. Notice that in the above statement the restriction on the solution is only

negativity instead of k-plurisubharmonicity. By scaling, we get a solution to Sk(uij̄) =
λ(−u)p for any λ>0 if p satisfies the restrictions. When p=k, we are with the eigenvalue

problem. As in the real Hessian case ([2]), one should be able to show that there exists

a λ1 > 0 such that there is a nontrivial nonpositive solution to the equation: Sk(uij̄) =

λ1(−u)k. Moreover, the solution should be unique up to scaling.

Remark 1.2. By the work of [3] and [4], the solution to (1.1) is a priori radially symmetric.

However, it’s not known if all the solutions to (1.2) are radially symmetric. The classical

moving plane method for proving radial symmetry works for many classes of real elliptic

equations but doesn’t seem to work in the complex case (cf. [4]). For the recent study of

complex Hessian equations, see [5–7] and the reference therein.


