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Abstract. The well-posedness of smooth solution to a 3-D simplified Energy-Transport
model is discussed in this paper. We prove the local existence, uniqueness, and asymp-
totic behavior of solution to the equations with hybrid cross-diffusion. The smooth
solution convergences to a stationary solution with an exponential rate as time tends
to infinity when the initial date is a small perturbation of the stationary solution.
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1 Introduction

Energy-Transport model was first proposed by Stratton [1] and latter derived from the

semiconductor Boltzmann equation by Ben Abdallah et al. [2]. The strong coupling and

temperature gradients make it difficult to analyze the energy-transport model. There-

fore, we consider in this paper a simplified energy-transport model which still includes

temperature gradients with weakly coupling of the energy equation.

The simplified Energy-Transport model, achieved by Jüngel et al. in [3], consists of a

drift-diffusion-type equation for the electron density n(x,t), a nonlinear heat equation for

the electron temperature θ(x,t), and the Poisson equation for the electric potential V(x,t):

∂tn−div(∇(nθ)−n∇V)=0, (1.1)

div(κ(n)∇θ)=
n

τ
(θ−θL(x)), (1.2)
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λ2△V=n−C(x). (1.3)

Here, κ(n) is the thermal conductivity, we suppose that κ(n)=n, θL(x) is the lattice tem-

perature, and C(x) is the doping profile characterizing the device under consideration.

The energy relaxation time τ>0 and the Debye length λ>0 are scaled physical parame-

ters. Without lose of generality, we suppose that τ=θL(x)=λ=1, and set E(x,t)=∇V(x,t).
Then the model (1.1)-(1.3) can be changed into the following model for the electron den-

sity n(x,t), the electron temperature θ(x,t) and the electric field E(x,t):

∂tn−divj=0, j=(∇(nθ)−nE), (1.4)

div(n∇θ)=n(θ−1), (1.5)

divE=n−C(x). (1.6)

Eqs. (1.4)-(1.6) hold in the bounded main Ω⊂R3, with the initial boundary condition

n(x,0)=n0(x), (1.7)

j·~n|∂Ω =0, ∇θ ·~n|∂Ω =0, E·~n|∂Ω=0, (1.8)

where~n denotes the exterior unit normal vector on ∂Ω, and the initial datum n0(x) satis-

fies the following condition
∫

Ω

n0(x)−C(x)dx=0. (1.9)

Before we exposit our results, we review the energy-transport model in the literature.

The common form for energy-transport model [4] is

∂tn−
1

q
divJn =0,

∂tU(n,θ)−divJw =−Jn ·∇V+W(n,θ),

λ2△V=n−C(x),

with

Jn = L11

(∇n

n
− q∇V

kBθ

)

+

(

L12

kBθ
− 3

2
L11

)∇θ

θ
,

qJw = L21

(∇n

n
− q∇V

kBθ

)

+

(

L22

kBθ
− 3

2
L21

)∇θ

θ
,

where U(x,θ) is the density of the internal energy, W(n,θ) is the energy relaxation term

satisfying W(n,θ)(θ−θL(x))≤0,

W(n,θ)=−n(θ−θL(x))

τβ
, τβ=

π
5
2 θ

1
2−β

√
8Γ(β+2)s0

,


