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Abstract. The well-posedness of smooth solution to a 3-D simplified Energy-Transport
model is discussed in this paper. We prove the local existence, uniqueness, and asymp-
totic behavior of solution to the equations with hybrid cross-diffusion. The smooth
solution convergences to a stationary solution with an exponential rate as time tends
to infinity when the initial date is a small perturbation of the stationary solution.

AMS Subject Classifications: 35M10, 35K65, 76N10
Chinese Library Classifications: 0175.29

Key Words: Energy-Transport model; Gagliardo-Nirenberg inequality; asymptotic behavior.

1 Introduction

Energy-Transport model was first proposed by Stratton [1] and latter derived from the
semiconductor Boltzmann equation by Ben Abdallah et al. [2]. The strong coupling and
temperature gradients make it difficult to analyze the energy-transport model. There-
fore, we consider in this paper a simplified energy-transport model which still includes
temperature gradients with weakly coupling of the energy equation.

The simplified Energy-Transport model, achieved by Jiingel et al. in [3], consists of a
drift-diffusion-type equation for the electron density #(x,t), a nonlinear heat equation for
the electron temperature 0(x,t), and the Poisson equation for the electric potential V (x,f):

on—div(V(nf)—nVV)=0, (1.1)
div(x(n)V8) = %(G—OL(x)), (1.2)

*Corresponding author. Email addresses: 1iuchundi@emails.bjut.edu.cn (C. D. Liu), y1i@bjut.edu.cn
(Y. Li), wangshu@bjut .edu. cn (S. Wang)

http:/ /www.global-sci.org/jpde/ 71



72 C.D.Liuy, Y. Liand S. Wang / J. Partial Diff. Eq., 29 (2016), pp. 71-88

AAV =n—C(x). (1.3)

Here, «(n) is the thermal conductivity, we suppose that x(n) =n, 01 (x) is the lattice tem-
perature, and C(x) is the doping profile characterizing the device under consideration.
The energy relaxation time 7 >0 and the Debye length A > 0 are scaled physical parame-
ters. Without lose of generality, we suppose that 7=60; (x)=A=1, and set E(x,t)=VV(x,t).
Then the model (1.1)-(1.3) can be changed into the following model for the electron den-
sity n(x,t), the electron temperature 6(x,t) and the electric field E(x,t):

on—divj=0, j=(V(nf)—nE), (1.4)
div(nV6)=n(6-1), (1.5)
divE=n—C(x). (1.6)

Egs. (1.4)-(1.6) hold in the bounded main (2 C R3, with the initial boundary condition

n(x,0)=no(x), (1.7)
jilan=0, VO-iilsn=0, E-filsan=0, (1.8)

where 7 denotes the exterior unit normal vector on d(), and the initial datum n¢(x) satis-
fies the following condition

/Qno(x)—C(x)dx:O. (1.9)

Before we exposit our results, we review the energy-transport model in the literature.
The common form for energy-transport model [4] is

atn— %le]n :0,

o:U(n,0)—div]y=—J,- VV+W(n,0),
A AV =n—C(x),

. Vn C]VV L12 3 \Y}
Jn=Ln (7 k50 ) + (k;T@ §L11> o

L (Yr AV, (L2 3, Ve
fﬂw—Lm( - v >+< L21>

with

where U(x,0) is the density of the internal energy, W(n,0) is the energy relaxation term
satisfying W (n,0) (6 —6r(x)) <0,
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