$W_0^{1,p(x)}$ Versus C^1 Local Minimizers for a Functional with Critical Growth

SAOUDI K.*

College of arts and sciences at Nayriya, university of Dammam 31441 Dammam, Kingdom of Saudi Arabia.

Received 28 September 2012; Accepted 24 January 2014

Abstract. Let $\Omega \subset \mathbb{R}^N$, $(N \ge 2)$ be a bounded smooth domain, *p* is Hölder continuous on $\overline{\Omega}$,

$$1 < p^- := \inf_{\Omega} p(x) \le p^+ = \sup_{\Omega} p(x) < \infty,$$

and $f:\overline{\Omega} \times \mathbb{R} \to \mathbb{R}$ be a C^1 function with $f(x,s) \ge 0$, $\forall (x,s) \in \Omega \times \mathbb{R}^+$ and $\sup_{x \in \Omega} f(x,s) \le C(1+s)^{q(x)}$, $\forall s \in \mathbb{R}^+$, $\forall x \in \Omega$ for some $0 < q(x) \in C(\overline{\Omega})$ satisfying $1 < p(x) < q(x) \le p^*(x) - 1$, $\forall x \in \overline{\Omega}$ and $1 < p^- \le p^+ < q^- \le q^+$. As usual, $p^*(x) = \frac{Np(x)}{N-p(x)}$ if p(x) < N and $p^*(x) = \infty$ if $p(x) \ge N$. Consider the functional $I: W_0^{1,p(x)}(\Omega) \to \mathbb{R}$ defined as

$$I(u) \stackrel{\text{def}}{=} \int_{\Omega} \frac{1}{p(x)} |\nabla u|^{p(x)} \mathrm{d}x - \int_{\Omega} F(x, u^+) \mathrm{d}x, \quad \forall u \in W_0^{1, p(x)}(\Omega),$$

where $F(x,u) = \int_0^s f(x,s) ds$. Theorem 1.1 proves that if $u_0 \in C^1(\overline{\Omega})$ is a local minimum of I in the $C^1(\overline{\Omega}) \cap C_0(\overline{\Omega})$ topology, then it is also a local minimum in $W_0^{1,p(x)}(\Omega)$ topology. This result is useful for proving multiple solutions to the associated Euler-lagrange equation (P) defined below.

AMS Subject Classifications: 35J65, 35J20, 35J70 **Chinese Library Classifications**: O175.8, O175.25 **Key Words**: p(x)-Laplacian equation; variational methods; local minimizer.

1 Introduction

Let $\Omega \subset \mathbb{R}^N$, $N \ge 2$ be a bounded smooth domain, p is Hölder continuous on $\overline{\Omega}$,

$$1 < p_{-} := \inf_{\Omega} p(x) \le p_{+} = \sup_{\Omega} p(x) < \infty.$$

$$(1.1)$$

http://www.global-sci.org/jpde/

^{*}Corresponding author. *Email address:* kasaoudi@gmail.com (K. Saoudi)

The assumptions on the source terms f is as follows:

- (f1) $f: \Omega \times \mathbb{R} \to \mathbb{R}$ is a measurable function with respect to the first argument and continuous differentiable with respect to the second argument for a.e. $x \in \Omega$. Moreover, f(x,0) = 0 for $(x,s) \in \overline{\Omega} \times \mathbb{R}^+$.
- (f2) There exists q(x) > p(x) 1 satisfying $q(x) \le p^*(x) 1 \stackrel{\text{def}}{=} \frac{Np(x)}{N-p(x)} 1$ if p(x) < N, $q(x) < \infty$ otherwise, and $1 < p^- \le p^+ < q^- \le q^+$ such that $f(x,s) \le C(1+s)^{q(x)}$ for all $(x,s) \in \Omega \times \mathbb{R}^+$ and for some C > 0.

Let $F(x,u) \stackrel{\text{def}}{=} \int_0^u f(x,s) ds$. We consider functional $I: W_0^{1,p(x)}(\Omega) \to \mathbb{R}$ given by

$$I(u) \stackrel{\text{def}}{=} \int_{\Omega} \frac{1}{p(x)} |\nabla u|^{p(x)} \mathrm{d}x - \int_{\Omega} F(x, u^+) \mathrm{d}x, \quad \forall u \in W_0^{1, p(x)}(\Omega),$$
(1.2)

where as usual $t^+ \stackrel{\text{def}}{=} \max(t, 0)$.

The operator $\Delta_{p(x)}u := \operatorname{div}(|\nabla u|^{p(x)-2}\nabla u)$ is called p(x)-Laplace where p is a continuous non-constant function. This differential operator is a natural generalization of the p-Laplace operator $\Delta_p u := \operatorname{div}(|\nabla u|^{p-2}\nabla u)$, where p > 1 is a real constant. However, the p(x)-Laplace operator possesses more complicated nonlinearity than p-Laplace operator, due to the fact that $\Delta_{p(x)}$ is not homogeneous. Our aim in this paper is to show the following

Theorem 1.1. Suppose that $p \in C^{0,\beta}(\overline{\Omega})$ and the conditions (f1)-(f2), (1.1) are satisfied. Let $u_0 \in C^1(\overline{\Omega})$ be a local minimizer of I in $C^1(\overline{\Omega}) \cap C_0(\overline{\Omega})$ topology; that is,

$$\exists \epsilon > 0 \text{ such that } u \in C^1(\overline{\Omega}) \cap C_0(\overline{\Omega}), \ \|u - u_0\|_{C^1(\overline{\Omega})} < \epsilon \Rightarrow I(u_0) \le I(u).$$

Then, u_0 is a local minimum of I in $W_0^{1,p(x)}(\Omega)$ also.

We remark that u_0 satisfies in the distributions sense the Euler-Lagrange equation associated to *I*, that is

$$(\mathbf{P}) \begin{cases} -\Delta_{p(x)} u = f(x, u), & \text{in } \Omega, \\ u|_{\partial\Omega} = 0, \quad u > 0, & \text{in } \Omega. \end{cases}$$

It means that $u_0 \in W_0^{1,p(x)}(\Omega)$ is a weak solution to (P), i.e. satisfies $\operatorname{essinf}_K u_0 > 0$ over every compact set $K \subset \Omega$ and

$$\int_{\Omega} |\nabla u_0|^{p(x)-2} \nabla u_0 \cdot \nabla \phi \, \mathrm{d}x = \int_{\Omega} f(x, u_0) \phi \, \mathrm{d}x, \tag{1.3}$$

for all $\phi \in C_c^{\infty}(\Omega)$. As usual, $C_c^{\infty}(\Omega)$ denotes the space of all C^{∞} functions $\phi : \Omega \to \mathbb{R}$ with compact support. Using the approach introduced in Brezis-Nirenberg [1], used in Ambrosetti-Brezis-Cerami [2] and extended to the *p*-Laplacian case in Guedda-Veron [3], Azorero-Manfredi-Peral [4], Theorem 1.1 can be used to prove the existence of a second