L¹ Existence and Uniqueness of Entropy Solutions to Nonlinear Multivalued Elliptic Equations with Homogeneous Neumann Boundary Condition and Variable Exponent

OUARO Stanislas* and OUEDRAOGO Arouna

Université de Ouagadougou, Unité de Formation et de Recherche en Sciences Exactes et Appliquées, Département de Mathématiques B.P.7021 Ouagadougou 03, Burkina Faso.

Received 29 January 2013; Accepted 6 January 2014

Abstract. In this work, we study the following nonlinear homogeneous Neumann boundary value problem $\beta(u) - \operatorname{div} a(x, \nabla u) \ni f$ in Ω , $a(x, \nabla u) \cdot \eta = 0$ on $\partial \Omega$, where Ω is a smooth bounded open domain in \mathbb{R}^N , $N \ge 3$ with smooth boundary $\partial \Omega$ and η the outer unit normal vector on $\partial \Omega$. We prove the existence and uniqueness of an entropy solution for L^1 -data f. The functional setting involves Lebesgue and Sobolev spaces with variable exponent.

AMS Subject Classifications: 35K55, 35D05

Chinese Library Classifications: 0175.26

Key Words: Elliptic equation; variable exponent; entropy solution; *L*¹-data; Neumann boundary condition.

1 Introduction

The paper is motivated by phenomena which are described by the homogeneous Neumann boundary value problem of the form

$$\begin{cases} \beta(u) - \operatorname{div} a(x, \nabla u) \ni f, & \text{in } \Omega, \\ a(x, \nabla u) \cdot \eta = 0, & \text{on } \partial \Omega, \end{cases}$$
(1.1)

where η is the unit outward normal vector on $\partial\Omega$, Ω is a smooth bounded open domain in \mathbb{R}^N , $N \ge 3$, $\beta = \partial j$ is a maximal monotone graph in \mathbb{R}^2 with dom(β) bounded on \mathbb{R} and $0 \in \beta(0)$, $f \in L^1(\Omega)$ and a is a Leray-Lions operator which involves variable exponents.

http://www.global-sci.org/jpde/

^{*}Corresponding author. *Email addresses:* souaro@univ-ouaga.bf, ouaro@yahoo.fr (S. Ouaro), arounaoued2002@yahoo.fr (A. Ouedraogo)

Note that *j* is a nonnegative, convex and l.s.c. function on \mathbb{R} and, ∂j is the subdifferential of *j*. We set

dom
$$(\beta) = [m, M] \subset \mathbb{R}$$
 with $m \le 0 \le M$.

Recall that a Leray-Lions operator which involves variable exponents is a Carathéodory function $a(x,\xi): \Omega \times \mathbb{R}^N \longrightarrow \mathbb{R}^N$ (i.e. $a(x,\xi)$ is continuous in ξ for a.e. $x \in \Omega$ and measurable in x for every $\xi \in \mathbb{R}^N$) such that:

• There exists a positive constant *C*₁ such that

$$|a(x,\xi)| \le C_1(j(x) + |\xi|^{p(x)-1}), \tag{1.2}$$

for almost every $x \in \Omega$ and for every $\xi \in \mathbb{R}^N$ where *j* is a nonnegative function in $L^{p'(.)}(\Omega)$, with 1/p(x)+1/p'(x)=1.

• The following inequalities hold

$$(a(x,\xi)-a(x,\eta))\cdot(\xi-\eta)>0, \tag{1.3}$$

for almost every $x \in \Omega$ and for every $\xi, \eta \in \mathbb{R}^N$, with $\xi \neq \eta$, and

$$\frac{1}{C}|\xi|^{p(x)} \le a(x,\xi) \cdot \xi, \tag{1.4}$$

for almost every $x \in \Omega, C > 0$ and for every $\xi \in \mathbb{R}^N$.

In this paper, we make the following assumption on the variable exponent:

 $p(\cdot):\overline{\Omega} \to \mathbb{R}$ is a continuous function such that $1 < p_{-} \le p_{+} < +\infty$, (1.5)

where $p_-:=$ essinf $_{x\in\Omega}p(x)$ and $p_+:=$ esssup $_{x\in\Omega}p(x)$.

As the exponent $p(\cdot)$ appearing in (1.2) and (1.4) depends on the variable x, the functional setting for the study of problem (1.1) involves Lebesgue and Sobolev spaces with variable exponents $L^{p(\cdot)}(\Omega)$ and $W^{1,p(\cdot)}(\Omega)$. In the next section, we will make a brief presentation of the variable exponent spaces.

Many results are known as regards to elliptic problems in the variational setting for Dirichlet or Dirichlet-Neumann problems (cf. [1–9]).

Problem (1.1) can be viewed as an extension of the following

$$\begin{cases} b(u) - \operatorname{div} a(x, \nabla u) = f, & \text{in } \Omega, \\ a(x, \nabla u) \cdot \eta = 0, & \text{on } \partial \Omega, \end{cases}$$
(1.6)

where Ω is a smooth bounded open domain in \mathbb{R}^N , $N \ge 3$ and η the outer unit normal vector on $\partial \Omega$. $b : \mathbb{R} \to \mathbb{R}$ is a continuous, nondecreasing function, surjective such that b(0) = 0, $f \in L^1(\Omega)$ and a is a Lerray-Lions operator which involves variable exponents.

Problem (1.6) was studied by Bonzi, Nyanquini and Ouaro (cf. [2]) where they proved the existence and uniqueness of an entropy solution. An equivalent notion of solution is