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Abstract. A linearized and conservative finite difference scheme is presented for the
initial-boundary value problem of the Klein-Gordon-Zakharov (KGZ) equation. The
new scheme is also decoupled in computation, which means that no iteration is needed
and parallel computation can be used, so it is expected to be more efficient in imple-
mentation. The existence of the difference solution is proved by Browder fixed point
theorem. Besides the standard energy method, in order to overcome the difficulty
in obtaining a priori estimate, an induction argument is used to prove that the new
scheme is uniquely solvable and second order convergent for U in the discrete L∞-
norm, and for N in the discrete L2-norm, respectively, where U and N are the numeri-
cal solutions of the KGZ equation. Numerical results verify the theoretical analysis.
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1 Introduction

The Klein-Gordon-Zakharov (KGZ) equation

∂ttu−∂xxu+u+mu+|u|2u=0, (1.1a)

∂ttm−∂xxm=∂xx(|u|2), (1.1b)
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is a classical model which describes the interaction of the Langmuir wave and the ion
acoustic wave in a plasma [1]. The equations are apparently coupled equations by two
functions u(x,t) and m(x,t) to be solved. The function u(x,t) denotes the fast time scale
component of electric field raised by electrons and the function m(x,t) denotes the devi-
ation of ion density from its equilibrium. Here u(x,t) is a complex function, and m(x,t)
is a real function.

Extensive mathematical and numerical studies have been carried out for the KGZ
equation in the literatures. Along the mathematical front, for the well-posedness and
global smooth solutions of the KGZ equation, we refer to [2–5] and references therein.
Along the numerical front, some conservative finite difference schemes [6–8] have been
developed for the KGZ equation. Z. Fei et al. pointed out in [9] that the nonconservative
schemes may easily show nonlinear blow-up, and they presented a new conservative
linear difference scheme for nonlinear Schrödinger equation. In [10], Li and Vu-Quoc
also said, ”in some areas, the ability to preserve some invariant properties of the original
differential equation is a criterion to judge the success of a numerical simulation.” In [11–
17] the conservative finite difference schemes were used for some nonlinear equations,
and the numerical results were very good.

In general, the solutions of (1.1a)-(1.1b) decays rapidly to zero for |x| ≫ 0 (see [1]).
Therefore, numerically we can solve (1.1a)-(1.1b) in a finite domain Ω=(xl,xr) with −xl≫
0, xr ≫0. In this paper, we investigate the KGZ equations on [xl ,xr]×[0,T] and consider
the numerical solution of (1.1a)-(1.1b) subject to initial conditions

u(x,0)=u0(x), ut(x,0)=u1(x), m(x,0)=m0(x), mt(x,0)=m1(x), (1.2)

and boundary conditions

u(xl,t)=u(xr ,t)=0, m(xl ,t)=m(xr,t)=0, (1.3)

where u0(x), u1(x), m0(x) and m1(x) are known smooth functions. The initial-boundary
value problem (1.1a)-(1.3) conserves the energy

E(t) :=
∫ xr

xl

[

|∂tu|2+|∂xu|2+|u|2+m|u|2+ 1

2
|v|2+ 1

2
|m|2+ 1

2
|u|4

]

dx=E(0), (1.4)

where v is given by
v=−∂xw, ∂xxw=∂tm. (1.5)

For convenience, some notations are firstly introduced. For a positive integer N,
choose time-step τ = T/N and denote time steps tn = nτ, n = 0,1,2,··· ,N; choose mesh
size h=(xr−xl)/J with J a positive integer and denote grid points as

xj = a+ jh, j=0,1,··· , J.

Denote the index sets

TJ ={j| j=0,1,2,··· , J}, T o
J ={j| j=1,2,··· , J−1}.


