Existence of Nontrivial Weak Solutions to Quasi-Linear Elliptic Equations with Exponential Growth

WANG Chong*

Department of Mathematics, the George Washington University, Washington DC 20052, USA.

Received 13 June 2012; Accepted 1 December 2012

Abstract. In this paper, we study the existence of nontrivial weak solutions to the following quasi-linear elliptic equations

$$-\triangle_n u + V(x)|u|^{n-2}u = \frac{f(x,u)}{|x|^{\beta}}, \quad x \in \mathbb{R}^n \ (n \ge 2),$$

where $-\triangle_n u = -\operatorname{div}(|\nabla u|^{n-2}\nabla u), \ 0 \leq \beta < n, V: \mathbb{R}^n \to \mathbb{R}$ is a continuous function, f(x, u) is continuous in $\mathbb{R}^n \times \mathbb{R}$ and behaves like $e^{\alpha u \frac{n}{n-1}}$ as $u \to +\infty$.

AMS Subject Classifications: 35J20, 35J60

Chinese Library Classifications: O175

Key Words: Trudinger-Moser inequality; exponential growth.

1 Introduction

Consider nonlinear elliptic equations of the form

$$-\triangle_p u = f(x, u), \qquad \text{in } \Omega, \tag{1.1}$$

where Ω is a smooth bounded domain in \mathbb{R}^n , and $-\Delta_p u = -\operatorname{div}(|\nabla u|^{p-2}\nabla u)$. Brézis [1], Brézis-Nirenberg [2] and Bartsh-Willem [3] studied this problem under the assumptions that p = 2 and $|f(x,u)| \leq c(|u|+|u|^{q-1})$. Garcia-Alonso [4] studied this problem under the assumptions that $p \leq n$ and $p^2 \leq n$. When $\Omega = \mathbb{R}^n$ and p = 2, Kryszewski-Szulkin [5], Alama-Li [6], Ding-Ni [7] and Jeanjean [8] studied the following equations in stead of (1.1):

$$-\bigtriangleup u + V(x)u = f(x,u), \text{ in } \mathbb{R}^n.$$

http://www.global-sci.org/jpde/

^{*}Corresponding author. Email address: chongwang@gwu.edu (C. Wang)

In this paper we consider quasi-linear elliptic equations in the whole Euclidean space

$$- \triangle_n u + V(x) |u|^{n-2} u = \frac{f(x,u)}{|x|^{\beta}}, \qquad x \in \mathbb{R}^n \ (n \ge 2),$$
(1.2)

where $-\triangle_n u = -\operatorname{div}(|\nabla u|^{n-2}\nabla u), 0 \leq \beta < n, V : \mathbb{R}^n \to \mathbb{R}$ is a continuous function, f(x, u) is continuous in $\mathbb{R}^n \times \mathbb{R}$ and behaves like $e^{\alpha u \frac{n}{n-1}}$ as $u \to +\infty$.

D. Cao [9] and Cao-Zhang [10] studied problem (1.2) in the case n = 2 and $\beta = 0$. Panda [11], do Ó et al. [12, 13] and Alevs-Figueiredo [14] studied problem (1.2) in general dimension and $\beta = 0$. When $\beta \neq 0$, (1.2) was studied by Adimurthi-Yang [15], do Ó et al. [16], Yang [17], Zhao [18], and others. Similar problems in \mathbb{R}^4 or complete noncompact Riemannian manifolds were also studied by Yang [19, 20].

We define a function space

$$E \triangleq \left\{ u \in W^{1,n}(\mathbb{R}^n) : \int_{\mathbb{R}^n} V(x) |u|^n \mathrm{d}x < \infty \right\}$$

with the norm

$$\|u\| \triangleq \left\{ \int_{\mathbb{R}^n} (|\nabla u|^n + V(x)|u|^n) \mathrm{d}x \right\}^{\frac{1}{n}}.$$
(1.3)

We say that $u \in E$ is a weak solution of problem (1.2) if for all $\varphi \in E$ we have

$$\int_{\mathbb{R}^n} (|\nabla u|^{n-2} \nabla u \nabla \varphi + V(x)|u|^{n-2} u \varphi) \mathrm{d}x = \int_{\mathbb{R}^n} \frac{f(x,u)}{|x|^{\beta}} \varphi \, \mathrm{d}x.$$

If a weak solution *u* satisfies $u(x) \ge 0$ for almost every $x \in \mathbb{R}^n$, we say *u* is positive.

Throughout this paper we assume the following two conditions on the potential V(x):

- $(V_1) V(x) \ge V_0 > 0;$
- (*V*₂) The function $\frac{1}{V(x)}$ belongs to $L^{1/(n-1)}(\mathbb{R}^n)$.

We also assume that the nonlinearity f(x,s) satisfies the following:

(*H*₁) There exist constants $\alpha_0, b_1, b_2 > 0$ such that for all $(x, s) \in \mathbb{R}^n \times \mathbb{R}^+$,

$$|f(x,s)| \leq b_1 s^{n-1} + b_2 \left\{ e^{\alpha_0 |s|^{\frac{n}{n-1}}} - \sum_{k=0}^{n-2} \frac{\alpha_0^k |s|^{\frac{kn}{n-1}}}{k!} \right\};$$

(*H*₂) There exists $\mu > n$, such that for all $x \in \mathbb{R}^n$ and s > 0,

$$0 < \mu F(x,s) \equiv \mu \int_0^s f(x,t) dt \leqslant s f(x,s);$$

(*H*₃) There exist constants $R_0, M_0 > 0$, such that for all $x \in \mathbb{R}^n$ and $s > R_0$,

$$F(x,s) \leqslant M_0 f(x,s);$$