doi: 10.4208/jpde.v26.n1.1 March 2013

Global Existence and Uniqueness of Solutions to Evolution *p*-Laplacian Systems with Nonlinear Sources

WEI Yingjie and GAO Wenjie*

Institute of Mathematics, Jilin University, Changchun 130012, China.

Received 25 February 2012; Accepted 1 December 2012

Abstract. This paper presents the global existence and uniqueness of the initial and boundary value problem to a system of evolution *p*-Laplacian equations coupled with general nonlinear terms. The authors use skills of inequality estimation and the method of regularization to construct a sequence of approximation solutions, hence obtain the global existence of solutions to a regularized system. Then the global existence of solutions to the system of evolution *p*-Laplacian equations is obtained with the application of a standard limiting process. The uniqueness of the solution is proven when the nonlinear terms are local Lipschitz continuous.

AMS Subject Classifications: 35A01, 35A02, 35G55

Chinese Library Classifications: O175.29, O175.4

Key Words: Global existence; uniqueness; degenerate; *p*-Laplacian systems.

1 Introduction

In this paper, we study the global existence and uniqueness of solutions to the initial and boundary value problem

$$u_{it} - \operatorname{div}(|\nabla u_i|^{p_i - 2} \nabla u_i) = f_i(u_1, \cdots, u_m), \quad (x, t) \in \Omega \times (0, T),$$
(1.1a)

$$u_i(x,0) = u_{i0}(x), \qquad \qquad x \in \Omega, \tag{1.1b}$$

$$u_i(x,t) = 0, \qquad (x,t) \in \partial\Omega \times (0,T), \qquad (1.1c)$$

where $p_i > 2$, $i = 1, 2, \dots, m$, T > 0, $\Omega \subset \mathbb{R}^n$ is an open connected bounded domain with smooth boundary $\partial \Omega$.

System (1.1a) models such as non-Newtonian fluids [1,2] and nonlinear filtration [3], etc. In the non-Newtonian fluids theory, (p_1, p_2, \dots, p_m) is a characteristic quantity of the

http://www.global-sci.org/jpde/

^{*}Corresponding author. Email addresses: weiyj@jlu.edu.cn (Y. Wei), wjgao@jlu.edu.cn (W. Gao)

fluids. The fluids with $(p_1, p_2, \dots, p_m) > (2, 2, \dots, 2)$ are called dilatant fluids and those with $(p_1, p_2, \dots, p_m) < (2, 2, \dots, 2)$ are called pseudoplastics. If $(p_1, p_2, \dots, p_m) = (2, 2, \dots, 2)$, they are Newtonian fluids.

For $p_i=2$, i=1,2, many authors have studied the problem above; most of them studied global existence, uniqueness, boundedness, and blowup behavior of solutions, etc(see [4–10]). Some authors have derived sufficient conditions for the nonexistence of global solutions. Such conditions are usually related to the structure of f_i , i=1,2. And some authors have studied the uniqueness of the global solution and blow-up of the positive solution, with nonlinearities in the form of

$$f_1(u_1, u_2) = u_1^{\alpha} u_2^{\beta}, f_2(u_1, u_2) = u_1^{\gamma} u_2^{\delta},$$

where $\alpha, \beta, \gamma, \delta$ are nonnegative numbers.

For $p_i > 2$, i = 1, 2, in [11], the authors gave local existence and uniqueness theorem of solutions for the initial and boundary value problem on $\Omega \times (0, T_1)$, where $T_1 \in (0, T)(T > 0)$ could be very small.

It is our goal to prove results of global existence and uniqueness for the degenerate system of m equations. Since the system is coupled with nonlinear terms, in general, the solutions of (1.1a)-(1.1c) will not exist for all time. Inspired by [12], in this paper, we study some special cases by stating constrains to nonlinear functions. The proof consists of two steps. First, we prove that the approximating problem admits a global solution; then we do some uniform estimates for these solutions. We mainly use skills of inequality estimation and the method of regularization to construct a sequence of approximation solutions, hence obtain existence of the solution to a regularized system of equations. By a standard limiting process, we obtain the existence of solutions to the system (1.1a)-(1.1c).

Systems (1.1a) degenerates when $\nabla u_i = 0$. In general, there is no classical solution; therefore, we have to study the generalized solutions to the problem (1.1a)-(1.1c). The definition of generalized solutions is as follows:

Definition 1.1. A nonnegative function $u = (u_1, \dots, u_m)$ is called a generalized solution to the system (1.1a)-(1.1c) in Ω_T , T > 0, if $u_i \in L^{\infty}(\Omega_T) \cap L^{p_i}(0,T; W_0^{1,p_i}(\Omega))$, $u_{it} \in L^2(\Omega_T)$, satisfying

$$\int_{\Omega} u_i(x,T)\varphi_i(x,T)dx + \iint_{\Omega_T} |\nabla u_i|^{p_i-2}\nabla u_i\nabla\varphi_i dxdt$$
$$= \iint_{\Omega_T} (f_i(u)\varphi_i + \varphi_{it}u_i)dxdt + \int_{\Omega} u_{i0}(x)\varphi_i(x,0)dx,$$
(1.2)

for any $\varphi_i \in C^1(\overline{\Omega}_T)$, s.t. $\varphi_i = 0$, for $(x,t) \in \partial \Omega \times (0,T)$; and $u_i(x,t) = 0$, $(x,t) \in \partial \Omega \times (0,T)$, where $i = 1, 2, \cdots, m$.

2 Main results

In order to study the problem (1.1a)-(1.1c), we make the following assumptions: