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Abstract. We consider the stability of a specific nematic liquid crystal configuration
under an applied magnetic field. We show that for some specific configuration there
exist two critical values Hn and Hsh of applied magnetic field. When the intensity of
the magnetic field is smaller than Hn, the configuration of the energy is only global
minimizer, when the intensity is between Hn and Hsh, the configuration is not global
minimizer, but is weakly stable, and when the intensity is larger than Hsh, the config-
uration is instable. Moreover, we also examine the asymptotic behavior of the global
minimizer as the intensity tends to the infinity.
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1 Introduction

The purpose of this paper is to use the Oseen-Frank model to examine the change of
stability of a specific nematic liquid crystal configuration under an applied magnetic
field. The effect of applied electric and magnetic fields on liquid crystals is an impor-
tant problem in the physics of liquid crystals. It is well known that as the magnetic field
increases passing a critical value the configuration looses its stability. This phenomenon
has been studied by many physicists and mathematicians, for example, see Atkin and
Stewart [1, 2], Cohen and Luskin [3] and Lin and Pan [4]. The theory for molecular ori-
entation in nematic liquid crystal was given by Ericksen and Leslie [5]. According to the
theory, for nematic liquid crystals the bulk free energy without external field is given by

W(n)=
∫

Ω

W(∇n,n)dx, (1.1)
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where n = n(x) is the unit vector field which called the director at x ∈ Ω, Ω ⊂ R3 is a
bounded smooth domain which is occupied by the material, and W(∇n,n) is the Oseen-
Frank energy density:

2W(∇n,n)=K1(divn)2+K2(n·curln)2+K3|n×curln|2+ν[Tr(∇n)2−(divn)2], (1.2)

where Ki (i = 1,2,3) are constants which represent the elastic constants, and ν is a real
constant.

Throughout this paper, we impose the strong anchoring condition to the director field,
that is to say, the Dirichlet boundary condition n(x)=e0(x) on the boundary ∂Ω where e0 :
∂Ω→S2 is a given smooth unit vector field. In the situation where liquid crystal material
is subject to a static magnetic field H, we must add a magnetic energy contribution to
the energy W(n). Such a magnetic energy density is of the form −χa(H ·n)2 where χa is
a positive constant (cf. de Gennes and Prost [6, p. 287]). We note that under the strong
anchoring condition, the integral of the last term of (1.2):

S(e0) :=
∫

Ω

[Tr(∇u)2−(divn)2]dx, (1.3)

represent a surface energy which only depends on the boundary term e0 (cf. Bauman et
al. [7]), and so does not affect the problem of finding equilibrium configurations. Thus
we consider the total energy density of the material without magnetic field

2F(∇n,n)=K1(divn)2+K2(n·curln)2+K3|n×curln|2.

To describe the space of admissible director fields, let W1,2(Ω,R3) be the usual Sobolev
space of vector fields, W1,2(Ω,S2)={u∈W1,2(Ω,R3);|u(x)|=1 a.e. in Ω}, and

W1,2(Ω,S2,e0)={u∈W1,2(Ω,S2);u= e0 on ∂Ω}.

We note that if e0 : ∂Ω → S2 is a smooth vector field and ∂Ω is Lipschitzian, then
W1,2(Ω,S2,e0) is non-empty set (cf. Hardt et al. [8]). By the standard theory of varia-
tional problem, we see that the minimizing problem

inf
n∈W1,2(Ω,S2,e0)

F(n), (1.4a)

where

F [n]=
∫

Ω

2F(∇n,n)dx, (1.4b)

is achieved by some n∈W1,2(Ω,S2,e0).
We assume that the magnetic field H is of the form H =σh where h is a unit constant

vector and σ>0 is the intensity of H and consider the energy functional

Fσh[n]=F [n]−χaσ2
∫

Ω

(h ·n)2dx

=
∫

Ω

{K1(divn)2+K2(n·curln)2+K3|n×curln|2}dx−χaσ2
∫

Ω

(h·n)2dx.


