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Abstract. In this paper, we consider initial boundary value problem for the equations
of one-dimensional nonlinear thermoelasticity with second sound in R+. First, we
derive decay rates for linear systems which, in fact, is a hyperbolic systems with a
damping term. Then, using this linear decay rates, we get L1 and L∞ decay rates for
nonlinear systems. Finally, combining with L2 estimates and a local existence theorem,
we prove a global existence and uniqueness theorem for small smooth data.
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1 Introduction

This paper is concerned with the equations for the one-dimensional nonlinear thermoe-
lasticity with second sound with reference configuration in R+, which can be described
as follows: (see [1] and [2])

ωt−vx =0, (1.1)

vt−a(ω,θ,q)ωx+b(ω,θ,q)θx =0, (1.2)

ã(ω,θ,q)θt+b(ω,θ,q)vx+c(θ)qx =0, (1.3)

τqt+q+κθx =0, (1.4)

where x∈Ω=(0,+∞), t∈ (0,+∞). ω=ω(x,t), v= v(x,t), θ= θ(x,t), q= q(x,t) stand for
the displacement gradient, the velocity, the difference of temperature and the heat flux,
respectively, and

a(ω,θ,q)=ψωω, b=−ψω,θ, ã(ω,θ,q)=−ψθθ, c(θ)=1/(θ+T0),
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where ψ = ψ(ω,θ,q) is the specific Helmholtz free energy, τ, κ are positive constants.
|θ|≤K<T0 will be a posterior estimate justified by the global small solution. Subscripts
denote partial differentiations. We consider traction free and constant temperature for all
time on the boundary ∂Ω, i.e.

ω|∂Ω = θ|∂Ω =0, t≥0, (1.5)

and initial conditions

ω(0,x)=ω0, v(0,x)=v0, θ(0,x)= θ0, q(0,x)=q0, x∈Ω. (1.6)

The above system models the second sound phenomenon. Specifically, Eq. (1.4) rep-
resents Cattaneo’s Law of heat conduction modeling thermal disturbances as wave-like
pulses travel at finite speed. For a discussion of this model, see [3–5]. When τ=0, Eq. (1.4)
turns into

q+κθx =0. (1.7)

Eqs. (1.1)-(1.3) and (1.7) constitute the classical thermoelasticity where thermal behavior
is described by the Fourier’s Law, i.e., (1.7). For the comparison of the two models, see
[6–9].

In the one-dimension case, the Cauchy problem for the above mentioned system has
been treated by Tarabek [10], where he showed well-posedness and decay to an equilib-
rium. For initial boundary value problems, Racke [6] has proved the exponential stability
and global existence on bounded domain. In our case, we consider a special unbounded
domain, that is, Ω=R+. The main difficulty here is that we can not use Poincaré’s in-
equality since the domain is unbounded.

This paper is mainly motivated by Jiang’s paper [11]. In that paper, he was able to
prove a global solution for the equations of classical one-dimensional thermoelasticity in
R+ for small smooth data. It seems that many results in classical thermoelasticity can be
extended to thermoelasticity with second sound, see [6, 8, 9]. However, it is not true, for
example, for Timoshenko-type thermoelastic systems, where a system can be or remain
exponentially stable under Fourier’s law, while it loses this property under Cattaneo’s
law, see [7]. Our question is that whether a weak damping effect given by Eq. (1.4) is still
predominating to ensure decay rates and global solution compared with a strong impact
of dissipation induced by Eq. (1.7).

We now introduce some notations which will be frequently used throughout the pa-
per. For a non-negative integer N, let

DNu= ∑
l+m=N

∂l
t∂

m
x u.

We denote by Wm,p(Ω), 0 ≤ m ≤ ∞, 1 ≤ p ≤ ∞, the usual Sobolev space with the norm
‖·‖Wm,p . For convenience, Hm(Ω) and Lp(Ω) stand for Wm,2(Ω) and W0,p(Ω) respectively.
Let X be a Banach space. We denote by Lp([α,β],X)(1≤ p≤∞) and ‖·‖Lp([α,β],X) the space


