doi: 10.4208/jpde.v23.n4.2 November 2010

Uniqueness of the Weak Extremal Solution to Biharmonic Equation with Logarithmically Convex Nonlinearities

LUO Xue^{1,2,*}

¹ Department of Mathematics, East China Normal University, Shanghai 200241, China.

² Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, Chicago, IL 60607, USA.

Received 17 January 2009; Accepted 13 September 2010

Abstract. In this note, we investigate the existence of the minimal solution and the uniqueness of the weak extremal (probably singular) solution to the biharmonic equation

 $\triangle^2 \omega = \lambda g(\omega)$

with Dirichlet boundary condition in the unit ball in \mathbb{R}^n , where the source term is logarithmically convex. An example is also given to illustrate that the logarithmical convexity is not a necessary condition to ensure the uniqueness of the extremal solution.

AMS Subject Classifications: 35G30, 35J40

Chinese Library Classifications: O175.25, O175.29, O175.4, O175.8

Key Words: Biharmonic equation; logarithmically convex nonlinearities; extremal solution; uniqueness.

1 Introduction

In 1960s, a problem, which came from combustion theory [12, 15] and stellar structure [7], had been brought into mathematicians' attention by great Russian mathematician Gel'fand [12]. The problem is written as:

$$\begin{cases} -\triangle u = \lambda e^{u}, & \text{in } \Omega, \\ u = 0, & \text{on } \partial\Omega, \end{cases}$$
(G)

http://www.global-sci.org/jpde/

^{*}Corresponding author. *Email addresses:* xluo6@uic.edu, luoxue0327@163.com (X. Luo)

where Ω is a bounded domain in \mathbb{R}^n ($n \ge 3$) and $\lambda \ge 0$ is a parameter. It is well known that (see [5, 6, 8, 12, 16]) there exists a $\lambda^* > 0$, such that:

- a) For every $0 < \lambda < \lambda^*$, equation (G) has a minimal, positive classical solution u_{λ} , named minimal solution, which is the unique stable solution of (G);
- b) The map $\lambda \mapsto u_{\lambda}$ is increasing;
- c) For $\lambda > \lambda^*$, there is no solution, even in the weak sense;
- d) For $\lambda = \lambda^*$, there is a weak solution, called extremal solution, $u^* = \lim_{\lambda \to \lambda^*} u_{\lambda}$ of (G);
- e) The extremal solution u^* is unique, no matter it's singular or regular.

Moreover, the results above are also true for the generalized Gel'fand problem:

$$\begin{cases} -\triangle u = \lambda g(u), & \text{ in } \Omega, \\ u = 0, & \text{ on } \partial \Omega, \end{cases}$$
 (G_g)

where the source term *g* satisfies the superlinear condition, i.e.

g:
$$[0, +\infty) \mapsto [0, +\infty)$$
 is a C^1 convex, nondecreasing function
with $g(0) > 0$, and $\lim_{t \to +\infty} \frac{g(t)}{t} = +\infty$. ($C_g 1$)

The appearance of higher order models in physics and mechanics stimulates the study of higher order elliptic equations. Following this trend, Arioli et al. [2] investigated the biharmonic Gel'fand problem:

$$\begin{cases} \triangle^2 u = \lambda e^u, & \text{in } B, \\ u = \frac{\partial u}{\partial \nu} = 0, & \text{on } \partial B. \end{cases}$$
(G_{bi})

They extended the results a)-d) above to (G_{bi}) , while the uniqueness of the extremal solution, i.e. e), was an open problem (see Section 8, [2]). The extension is not absolutely trivial, since the lack of the "maximum principle" which plays such a crucial role in developing the theory for the Laplacian. Indeed, it is well known that such a principe does not normally hold for the general domain Ω (at least for the clamped boundary condition $u = \frac{\partial u}{\partial v} = 0$ on $\partial \Omega$) unless one restricts attention to the unit ball $\Omega = B$ in \mathbb{R}^n , where one can exploit a positivity preserving property of Δ^2 due to Boggio [4]. By restricted the domain to the unit ball, the comparison principle, a weak version of maximum principle, is