doi: 10.4208/jpde.v23.n2.2 May 2010

Regularity of Radial Solutions to the Complex Hessian Equations

HUANG Yong* and XU Lu

Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.

Received 12 March 2008; Accepted 21 November 2008

Abstract. In this paper we consider regularities of radial solutions to the degenerate complex Hessian equations. Our results generalize some results for Monge-Ampere equation in [Monn, Math. Ana. 275 (1986), pp. 501-511] and [Delanoe, J. Diff. Eqn. 58 (1985), pp. 318-344].

AMS Subject Classifications: 32U05, 35J60

Chinese Library Classifications: O175, O17

Key Words: The complex Hessian equation; regularity.

1 Introduction

Let Ω be a bounded domain in \mathbb{C}^n , and let $u \in C^2(\Omega)$ be a real valued-function. Then the complex Hessian of u defined by

$$[u_{i\bar{j}}] = \left[\frac{\partial^2 u(z)}{\partial z_i \partial \bar{z}_j}\right]$$

is an $n \times n$ Hermitian matrix at each point $z \in \Omega$. Let H_k denote the complex Hessian operator in \mathbb{C}^n , which is defined for C^2 functions u as follows:

$$H_k[u] = \sigma_k(u_{i\bar{i}}), \quad 1 \le k \le n,$$

where σ_k is the *k*-th elementary symmetric function for the eigenvalues of Hessian matrix $[u_{i\bar{i}}]$. That is, for $1 \le k \le n$ and $\lambda = (\lambda_1, ..., \lambda_n) \in \mathbb{R}^n$,

$$\sigma_k(\lambda) = \sum_{i_1 < \cdots < i_k} \lambda_{i_1} \cdots \lambda_{i_k},$$

http://www.global-sci.org/jpde/

^{*}Corresponding author. *Email addresses:* huangyong@Wipm.ac.cn, huangyong04@mails.tsinghua.edu.cn (Y. Huang), xulu@wipm.ac.cn (L. Xu)

which coincides with the Laplace $H_1[u] = \Delta u$ if k = 1, and the Monge-Ampere operator $H_n[u] = \det(u_{i\bar{i}})$ if k = n. We also define $\sigma_0 = 1$, $\sigma_k = 0$, $\forall k > n$ (see, e.g., [3]).

Definition 1.1. Let A be an $n \times n$ real symmetric matrix, and denote a symmetric convex cone as

 $\Gamma_k = \{A \colon \sigma_j(A) > 0, \ 1 \le j \le k\}.$

Then we say u is k-subharmonic if the complex Hessian $H[u] \in \overline{\Gamma}_k$. We also say that u is plurisubharmonic if k = n and subharmonic if k = 1.

We introduce some properties about σ_k for later proof (also see, e.g., [3]).

Property 1. Denote $\sigma_k(\lambda|i)$ as taking $\lambda_i = 0$ in $\sigma_k(\lambda)$. For $1 \le k, i \le n$ and $\lambda \in \mathbb{R}^n$

 $\sigma_k(\lambda) = \sigma_k(\lambda|i) + \lambda_i \sigma_{k-1}(\lambda|i).$

Property 2. For all $\lambda \in \Gamma_k = \{\lambda \in \mathbf{R}^n : \sigma_j(\lambda) > 0, 1 \le j \le k\}$, with $2 \le k \le n$, we have

$$\sigma_{l-1}^2(\lambda) \ge \sigma_l(\lambda) \sigma_{l-2}(\lambda), \quad \forall \, 2 \le l \le k.$$

We consider the following Dirichlet problem for $2 \le k \le n$:

$$\begin{cases}
 u \text{ is } k\text{-subharmonic,} \\
 H_k[u] = f, & x \in \Omega, \\
 u = \phi, & x \in \partial\Omega,
\end{cases}$$
(1.1)

where $f \in C^m(\overline{\Omega})$ is non-negative, $\phi \in C^{\infty}(\partial\Omega)$, and Ω is Γ_k -pseudoconvex with smooth boundary (k=n i.e. strongly pseudoconvex, see, [4]). The condition u be k-subharmonic is imposed for uniqueness (see, [4,5]). When k=n, the corresponding equation is complex Monge-Ampere equation which has been studied by many authors (see, e.g., [6–10]). One of important results is given by Caffarelli et al. [11] which proves that there exists a C^{∞} solution to this problem provided that $f \in C^{\infty}$ is non-vanishing on $\overline{\Omega}$. The result has recently been generalized by Li [4] to the k-Hessian operator (in fact more cases). However, when f is degenerate this is not always true. In this paper we consider what happens in the special case where $f \ge 0$ is radially symmetric.

The problem can be stated as follows. Let *B* denote the unit ball in \mathbb{C}^n . Given $f \ge 0$ on *B*, find a *k*-subharmonic function $u \in C^2(B)$ such that

$$\begin{cases} H_k[u] = f(|z|), & z \in B, \\ u = 0, & z \in \partial B. \end{cases}$$

$$(1.2)$$

A radial function *u* can be considered simply as a function of one real variable *r*. So in Section 2, we will compute $H_k[u]$ directly, obtaining a non-linear ordinary differential equation $H_k[u](r) = f(r)$. This equation is then solved by two integrations, giving *u* in terms of *f*. We have following results