Regularity of Radial Solutions to the Complex Hessian Equations

HUANG Yong* and XU Lu

Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.

Received 12 March 2008; Accepted 21 November 2008

AMS Subject Classifications: 32U05, 35J60
Chinese Library Classifications: O175, O17
Key Words: The complex Hessian equation; regularity.

1 Introduction

Let Ω be a bounded domain in \(\mathbb{C}^n \), and let \(u \in C^2(\Omega) \) be a real valued-function. Then the complex Hessian of \(u \) defined by

\[
[u_{ij}] = \left[\frac{\partial^2 u(z)}{\partial z_i \partial \bar{z}_j} \right]
\]

is an \(n \times n \) Hermitian matrix at each point \(z \in \Omega \). Let \(H_k \) denote the complex Hessian operator in \(\mathbb{C}^n \), which is defined for \(C^2 \) functions \(u \) as follows:

\[
H_k[u] = \sigma_k(u_{ij}), \quad 1 \leq k \leq n,
\]

where \(\sigma_k \) is the \(k \)-th elementary symmetric function for the eigenvalues of Hessian matrix \([u_{ij}] \). That is, for \(1 \leq k \leq n \) and \(\lambda = (\lambda_1, \ldots, \lambda_n) \in \mathbb{R}^n \),

\[
\sigma_k(\lambda) = \sum_{i_1 < \cdots < i_k} \lambda_{i_1} \cdots \lambda_{i_k},
\]

*Corresponding author. Email addresses: huangyong@wipm.ac.cn, huangyong04@mails.tsinghua.edu.cn (Y. Huang), xulu@wipm.ac.cn (L. Xu)

http://www.global-sci.org/jpde/
which coincides with the Laplace \(H_1[u] = \Delta u \) if \(k = 1 \), and the Monge-Ampere operator \(H_n[u] = \det(u_{ij}) \) if \(k = n \). We also define \(\sigma_0 = 1, \sigma_k = 0, \forall k > n \) (see, e.g., [3]).

Definition 1.1. Let \(A \) be an \(n \times n \) real symmetric matrix, and denote a symmetric convex cone as
\[
\Gamma_k = \{ A : \sigma_j(A) > 0, \ 1 \leq j \leq k \}.
\]
Then we say \(u \) is \(k \)-subharmonic if the complex Hessian \(H[u] \in \bar{\Gamma}_k \). We also say that \(u \) is plurisubharmonic if \(k = n \) and subharmonic if \(k = 1 \).

We introduce some properties about \(\sigma_k \) for later proof (also see, e.g., [3]).

Property 1. Denote \(\sigma_k(\lambda | i) \) as taking \(\lambda_i = 0 \) in \(\sigma_k(\lambda) \). For \(1 \leq k, i \leq n \) and \(\lambda \in \mathbb{R}^n \)
\[
\sigma_k(\lambda) = \sigma_k(\lambda | i) + \lambda_i \sigma_{k-1}(\lambda | i).
\]

Property 2. For all \(\lambda \in \Gamma_k = \{ \lambda \in \mathbb{R}^n : \sigma_j(\lambda) > 0, \ 1 \leq j \leq k \} \), with \(2 \leq k \leq n \), we have
\[
\sigma_{l-1}(\lambda) \geq \sigma_{l}(\lambda) \sigma_{l-2}(\lambda), \quad \forall \ 2 \leq l \leq k.
\]

We consider the following Dirichlet problem for \(2 \leq k \leq n \) :
\[
\begin{cases}
u \text{ is } k \text{-subharmonic},
\quad H_k[u] = f, \quad x \in \Omega, \\
u = \phi, \quad x \in \partial \Omega,
\end{cases}
\tag{1.1}
\]
where \(f \in C^n(\bar{\Omega}) \) is non-negative, \(\phi \in C^\infty(\partial \Omega) \), and \(\Omega \) is \(\Gamma_k \)-pseudoconvex with smooth boundary (\(k = n \) i.e. strongly pseudoconvex, see, [4]). The condition \(u \) be \(k \)-subharmonic is imposed for uniqueness (see, [4, 5]). When \(k = n \), the corresponding equation is complex Monge-Ampere equation which has been studied by many authors (see, e.g., [6–10]). One of important results is given by Caffarelli et al. [11] which proves that there exists a \(C^\infty \) solution to this problem provided that \(f \in C^\infty \) is non-vanishing on \(\bar{\Omega} \). The result has recently been generalized by Li [4] to the \(k \)-Hessian operator (in fact more cases). However, when \(f \) is degenerate this is not always true. In this paper we consider what happens in the special case where \(f \geq 0 \) is radially symmetric.

The problem can be stated as follows. Let \(B \) denote the unit ball in \(C^n \). Given \(f \geq 0 \) on \(B \), find a \(k \)-subharmonic function \(u \in C^2(B) \) such that
\[
\begin{cases}
H_k[u] = f(|z|), \quad z \in B, \\
u = 0, \quad z \in \partial B.
\end{cases}
\tag{1.2}
\]

A radial function \(u \) can be considered simply as a function of one real variable \(r \). So in Section 2, we will compute \(H_k[u] \) directly, obtaining a non-linear ordinary differential equation \(H_k[u](r) = f(r) \). This equation is then solved by two integrations, giving \(u \) in terms of \(f \). We have following results