
JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS
J. Part. Diff. Eq., Vol. 22, No. 4, pp. 352-361

doi: 10.4208/jpde.v22.n4.4
November 2009

Minimal Hypersurfaces in Hyperbolic Spaces

SUN Jun∗

Institute of Mathematics, Academy of Mathematics and Systems Sciences, Chinese
Academy of Sciences, Beijing 100190, China.

Received 22 December 2008; Accepted 27 July 2009

Abstract. In this paper, we reprove a theorem of M. Anderson [Invent. Math., 69
(1982), pp. 477-494] which established the existence of a minimal hypersurface in the
hyperbolic space with prescribed asymptotic boundary with non-negative mean cur-
vature in the non-parametric case. We use the mean curvature flow method.
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1 Introduction

It is an interesting problem to prove the existence of minimal surfaces in a given Rie-
mannian manifold. In 1982, Anderson [1] studied the minimal varieties in hyperbolic
spaces. His main result [1, Theorem 3] says that there exists a complete minimal, abso-
lutely area minimizing locally integral p-current Σ in Hn asymptotic to Mp−1 at infinity
for any immersed closed submanifold Mp−1 in the sphere at infinity of Hn. At the end
of his paper, Anderson proved the corresponding result for the non-parametric case [1,
Theorem 10]. Indeed, he proved the existence and uniqueness of the solution with the
boundary condition to the minimal hypersurface equation for the upperhalf space model
of Hn
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The proof of [1] is mainly based on the convex hull property for the stationary integral
p-current which gives the uniform upper and lower bounds on any compact set K in Ω.
The proof needs knowledge about geometric measure theory.
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In this paper, we give another proof of the theorem using the mean curvature flow
approach (see Section 4). More precisely, we consider the initial-boundary problem
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, in Ω×[0,∞),

f (x,0)= f0(x), for x∈Ω,

f (x,t)= f0(x)=0, for x∈∂Ω, t∈ [0,∞).

(1.2)

Our basic tool is the comparison principle for the mean curvature flow [2, 3]. Using this
we can obtain the a priori estimates we need. We compare the solution of (1.2) initiated
from an arbitrary graph with the hemisphere, which is a stationary solution to the mean
curvature flow (Proposition 2.1). The standard parabolic estimates guarantee the global
existence and convergence of the mean curvature flow.

Indeed, Huisken [4] has already used the mean curvature flow method to prove the
corresponding theorem for the Euclidean case. Of course, maximum principle is enough
in his case because of the lack of the term n−1

f . On the other hand, the comparison prin-

ciple is used by Ecker and Huisken when they study the global existence of the mean
curvature flow for the graphic case [5].

Our paper is organized as follows: In Section 2, we compute some basic geometric
quantities in Hn, and use them to prove that the hemisphere in the upperhalf space is
totally geodesic in the hyperbolic space. In Section 3, we establish the equivalence be-
tween the mean curvature flow equation and (1.2) and prove the comparison principle
for mean curvature flow. Indeed, Huisken proved this theorem in [2]. For the purpose of
completeness, we prove it here again. Finally, we prove the main theorem in Section 4.

2 Preliminaries

Let Hn denote the hyperbolic n-space of constant curvature -1. We will use several models
of Hn. For example, we will identify Hn with the unit ball in Rn via the Poincaré model.
This model exhibits the conformal equivalence of Hn with Rn, and the hyperbolic metric
on Bn is given by

ds2
H =

4

(1−r2)2
ds2

E,

where ds2
E is the Euclidean metric, and r is the distant from the origin. In this model, the

sphere ∂Bn is called the sphere at infinity and denoted by Sn−1(∞).
We have the natural compactification of Hn

H
n
=Hn∪Sn−1(∞)

given by the Poincaré model. And we define the asymptotic boundary S of p-dimensional
submanifold Σ in Hn by

S=suppΣ∩Sn−1(∞),


