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Abstract This paper studies the Cauchy problem of the dissipative quasi-geostrophic
equation in pseudomeasure space PMn+1−2α(Rn) or Lorentz space L

n
2α−1 ,∞(Rn), which

admit the singular solutions. The global well-posedness is established provided initial
data θ0(x) are small enough in these spaces. Moreover, the asymptotic stability of
solutions in pseudomeasure space is proved. In particular, if the initial data are homo-
geneous functions of degree 1− 2α, the self-similar solutions are also obtained.
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1. Introduction

In this paper we discuss the following Cauchy problem of the dissipative quasi-
geostrophic equation:

{ ∂θ

∂t
+ (u · ∇)θ + κ(−4)αθ = 0, (t, x) ∈ (0,∞)× Rn,

θ(x, 0) = θ0(x),
(1.1)

where 0 < α ≤ 1 is a fixed parameter and κ > 0 is the dissipative coefficient. The
function θ(t, x) represents the potential temperature and the fluid velocity u(t, x) =
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(u1, u2, · · · , un) is divergence free and determined from θ(t, x) by a stream function
ψ(t, x):

uj = ± ∂ψ

∂xk
, j, k = 1, 2, · · · , n. (1.2)

The function ψ(t, x) satisfies

(−4)
1
2 ψ = −θ. (1.3)

From (1.2) and (1.3) we can obtain that

uj = ±Rπ(j)θ, π(j) is a permutation of j = 1, 2, · · · , n, (1.4)

where uj may take either plus or minus sign, and

Rj =
−∂xj

(−4)1/2
, j = 1, 2, · · · , n (1.5)

are the Riesz transforms.
In the equation (1.1) the Riesz potential operator (−4)α is defined through the

Fourier transform

̂(−4)αf(ξ) = |ξ|2αf̂(ξ), (1.6)

where f̂(ξ) , F(f)(ξ) = (2π)−
n
2

∫
Rn e−ixξf(x)dx is the Fourier transform of f(x). For

notational convenience, we occasionally write Λ for (−4)
1
2 . In the particular case

n = 2, we have

u(t, x) =
(
∂x2(−4)−

1
2 θ,−∂x1(−4)−

1
2 θ

)
= (−R2θ,R1θ) = R⊥θ, (1.7)

where R = (R1,R2) is the 2-D Riesz transform.
Physically, the 2-D quasi-geostrophic equation models the evolution of temperature

of atmospheric and oceanic fluid flow on the two dimensional boundary of a fast rotating
three dimensional half space with small Rossby and Ekman number [1, 2]. The scalar
θ(t, x) represents the potential temperature and u(t, x) is the fluid velocity. These
equations have been actively investigated because of the mathematical importance and
potential applications to meteorology and oceanography [1–4].

Mathematically, the 2-D quasi-geostrophic equation serves as a lower dimensional
models of the 3-D Navier-Stokes equations because of the striking similarity between
the behavior of its solutions and that of the potential singular solutions of the 3-D N-S
equations [1], thus the study of the 2-D quasi-geostrophic equation may provide some
clues to the millennium prize problems on the Navier-Stokes equations [5].

In a series of previous works of Wu [6–9], the well-posedness results for initial data θ0

in Lebesgue space Lp, homogeneous Sobolev space L̇s,p, Morrey space Mp,λ and Hölder


