GLOBAL REGULARITY IN HOMOGENEOUS MORREY-HERZ SPACES OF SOLUTIONS TO NONDIVERGENCE ELLIPTIC EQUATIONS WITH VMO COEFFICIENTS*

Lu Shanzhen (Department of Mathematics, Beijing Normal University, Beijing 100875, China) (E-mail: lusz@bnu.edu.cn) Tao Shuangping

(Department of Mathematics, Northwest Normal University, Lanzhou 730070, China) (Email: taosp@nwnu.edu.cn)

(Received May. 20, 2005; revised Mar. 19, 2007)

Abstract In this paper, by establishing the boundedness results of singular integral operators and linear commutators, we obtain the global regularity, in homogeneous Morrey-Herz spaces, of strong solutions to nondivergence elliptic equations with VMO coefficients.

Key Words Elliptic equation; Morrey-Herz space; VMO; singular integral; commutator.

2000 MR Subject Classification 35J25, 42B20, 42B25. **Chinese Library Classification** 0175.2, 0174.2.

1. Introduction

Let Ω be an open subset of \mathbf{R}^n . Let $B_k = B(0, 2^k) = \{x \in \mathbf{R}^n : |x| \leq 2^k\}$ and $A_k = B_k \setminus B_{k-1}$ for $k \in \mathbf{Z}$. Let $\mathcal{X}_k = \mathcal{X}_{A_k}$ be the characteristic function of the set A_k for $k \in \mathbf{Z}$.

Definition 1.1 Let $\alpha \in \mathbf{R}, 0 , and <math>\lambda \geq 0$. The homogeneous Morrey-Herz spaces $M\dot{K}_{p,q}^{\alpha,\lambda}(\Omega)$ are defined by

$$M\dot{K}_{p,q}^{\alpha,\lambda}(\Omega) = \{ f \in L^q_{loc}(\Omega \setminus \{0\}) : \|f\|_{M\dot{K}_{p,q}^{\alpha,\lambda}(\Omega)} < \infty \},\$$

where

$$\|f\|_{M\dot{K}^{\alpha,\lambda}_{p,q}(\Omega)} = \sup_{k_0 \in \mathbf{Z}} 2^{-k_0\lambda} \left(\sum_{k=-\infty}^{k_0} 2^{k\alpha p} \|f\mathcal{X}_k\|_{L^q(\Omega)}^p \right)^{1/p}$$

with the usual modifications made when $p = \infty$.

^{*}Supported by the China National Natural Since Foundation(10571014).

The more general spaces are first introduced recently by Lu and Xu in [1]. Compare the homogeneous Morrey-Herz spaces $M\dot{K}_{p,q}^{\alpha,\lambda}(\Omega)$ with the homogeneous Herz spaces $\dot{K}_{q}^{\alpha,p}(\Omega)$ (see [2]) and the Morrey spaces $M_{q}^{\lambda}(\Omega)$ (see [3]), where $\dot{K}_{q}^{\alpha,p}(\Omega)$ is defined by

$$\dot{K}_{q}^{\alpha,p}(\Omega) = \{ f \in L^{q}_{loc}(\Omega \setminus 0) : \sum_{k=-\infty}^{\infty} 2^{k\alpha p} \| f \mathcal{X}_{k} \|_{L^{q}(\Omega)}^{p} < \infty \},$$

and $M_q^{\lambda}(\Omega)$ is defined by

$$M_q^{\lambda}(\Omega) = \{ f \in L^q_{loc}(\Omega) : \sup_{\rho > 0, x \in \Omega} \frac{1}{\rho^{\lambda}} \int_{B(x,\rho) \cap \Omega} |f(y)|^q \, dy < \infty \}.$$

It is easy to see that $M\dot{K}_{p,q}^{\alpha,0}(\Omega) = \dot{K}_q^{\alpha,p}(\Omega)$ and $M_q^{\lambda}(\Omega) \subset M\dot{K}_{q,q}^{0,\lambda}(\Omega)$.

Assume $f \in M\dot{K}_{p,q}^{\alpha,\lambda}(\Omega)$, the main purpose of this paper is to investigate the regularity, in the homogeneous Morrey-Herz spaces, of the strong solutions to the following Dirichlet problem on the second-order elliptic equations in nondivergence form:

$$\begin{cases} Lu \equiv \sum_{i,j=1}^{n} a_{ij}(x)u_{x_ix_j} = f \text{ a.e. in } \Omega, \\ u = 0 \text{ on } \partial\Omega, \end{cases}$$
(1.1)

where $x = (x_1, x_2, \dots, x_n) \in \mathbf{R}^n$, Ω is a bounded domain $C^{1,1}$ of \mathbf{R}^n , the coefficients $\{a_{ij}\}_{i,j=1}^n$ are symmetric and uniformly elliptic in Ω , i.e., for some $\Lambda > 0$ and every $\xi \in \mathbf{R}^n$,

$$a_{ij}(x) = a_{ji}(x), \text{ and } \Lambda^{-1} |\xi|^2 \le \sum_{i,j=1}^n a_{ij}(x)\xi_i\xi_j \le \Lambda |\xi|^2$$
 (1.2)

with a.e. $x \in \Omega$. Moreover, we assume that $a_{ij}(x) \in VMO(\Omega)$, the spaces of the functions of vanishing mean oscillation introduced by Sarason in [4].

By establishing the boundedness results of singular integral operators and linear commutators (see Section 2), owing to the integral representation formulas given in [5, 6], we obtain the following global regularity, in homogeneous Morrey-Herz spaces $M\dot{K}_{p,q}^{\alpha,\lambda}(\Omega)$, of the strong solution u to (1.1):

$$\|u\|_{W^2M\dot{K}^{\alpha,\lambda}_{p,q}(\Omega)} \le C\|f\|_{M\dot{K}^{\alpha,\lambda}_{p,q}(\Omega)},\tag{1.3}$$

where $0 , <math>1 < q < \infty$, $\lambda > 0$, $-n/q + \lambda \leq \alpha \leq n(1-1/q) + \lambda$, and $W^2 M \dot{K}_{p,q}^{\alpha,\lambda}(\Omega)$ is the homogeneous Sobolev-Merry-Herz spaces defined in Section 3. We can see that, when $\alpha = 0$ and p = q, the above results coordinate with those in the setting of the Merry spaces $M_q^{\lambda}(\Omega)$, which are proved by Fan, Lu, and Yang in [7].