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Abstract In this article we study the global existence of solutions to an initial
boundary value problem for the Mullins equation which describes the groove devel-
opment at the grain boundaries of a heated polycrystal, both the Dirichlet and the
Neumann boundary conditions are considered. For the classical solution we also inves-
tigate the large time behavior, it is proved that the solution converges to a constant, in
the L∞(Ω)−norm, as time tends to infinity.
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1. Introduction

In the present article we are interested in the global existence of solutions to an
initial boundary value problem for the Mullins equation which describes the groove
development at the grain boundaries of a heated polycrystal. When the weak solu-
tion happens to be classical we also investigate the large time behavior of the solution.
This model was proposed by Mullins in 1957, see [1]. In the classical theory of thermal
grooving, two principal mechanisms for mass transport on a metal surface can be distin-
guished, the evaporation-condensation and the surface diffusion. For some metals like
magnesium, the first mechanism plays a dominated role after a very short time. While
for some other metals, such as gold, the second mechanism dominates the process for
a very long time. We refer to [1] for more details. The initial boundary value problem
reads

ut = D
(
1 + u2

x

)−1
uxx, (1.1)

u|∂Ω = 0, (1.2)

u|t=0 = u0, (1.3)
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where the equation (1.1) must be satisfied in QT = (0, T ) × Ω, T is a certain real
number, Ω = (a, b), and ∂Ω = {a, b} with a, b being real numbers such that a < b. We
also consider the Neumann boundary condition, namely (1.2) is replaced by

ux|∂Ω = 0. (1.4)

Here u = u(t, x) is the unknown, u0 is the initial data which is given, where x, u are
Cartesian coordinates and t is the time. D is a constant defined by

D =
p0γω2

(2πM)
1
2 (kT )

3
2

,

where p0 is the vapor pressure in equilibrium with a plane surface (the curvature K = 0),
γ is the surface-free energy per unit area, ω is the molecular volume, M is the weight
of a molecule, and k is the Boltzmann constant and T is the absolute temperature,
respectively. For simplicity we assume that D = 1. As we shall see later on, we
state the existence theorem of solutions to the problems for both the Dirichlet and
the Neumann boundary conditions, we investigate mainly the problem with Dirichlet
boundary condition since many parts of the proofs for the two problems are similar,
however, we still state the key ingredients in the proof of the theorem for the problem
with the Neumann boundary condition, which is crucially different from those arising
in the Dirichlet problem.

Equation (1.1) is a model for thermal grooving of the first mechanism. We choose
the free energy function as

f(ux) =
ν

2
|ux|2,

suppose that u is a classical solution to (1.1) – (1.3), then one has

d

dt

∫

Ω
f(ux(t, x))dx=ν

∫

Ω
uxuxt = −ν

∫

Ω
uxxutdx

=−ν

∫

Ω

(
1 + u2

x

)−1
u2

xxdx

≤0. (1.5)

Therefore, the second law of thermodynamics is satisfied. If we define

J =
∫ ux dy

1 + y2
,

we find that (1.1) become ut = Jx, so J is a flux, (1.1) defines a gradient flow.
On the other hand, we can easily see that (1.1) is non-uniformly parabolic since

the coefficient of its leading term may decay to zero as ux tends to infinity. Thus, we
modify the equation to a uniformly parabolic one, to solve this approximate problem we
employ an existence theorem for quasilinear parabolic equations, see e.g. Ladyzenskaya,


