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Abstract We consider the system of perturbed Schrödinger equations




− ε2∆ϕ + α(x)ϕ = β(x)ψ + Fψ(x, ϕ, ψ)

− ε2∆ψ + α(x)ψ = β(x)ϕ + Fϕ(x, ϕ, ψ)

w := (ϕ,ψ) ∈ H1(RN ,R2)

where N ≥ 1, α and β are continuous real functions on RN , and F : RN ×R2 → R is of
class C1. We assume that either F (x,w) is super-quadratic and subcritical in w ∈ R2

or it is of the form ∼ 1
pP (x)|w|p + 1

2∗K(x)|w|2∗ with p ∈ (2, 2∗) and 2∗ = 2N/(N − 2),
the Sobolev critical exponent, P (x) and K(x) are positive bounded functions. Under
proper conditions we show that the system has at least one nontrivial solution wε

provided ε ≤ E ; and for any m ∈ N, there are m pairs of solutions wε provided that
ε ≤ Em and that F (x,w) is,in addition, even in w. Here E and Em are sufficiently small
positive numbers. Moreover, the energy of wε tends to 0 as ε → 0.
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1. Introduction and Main Results

The goal of this paper is to study the existence and multiplicity of semiclassical
solutions of the following Hamiltonian system of perturbed Schrödinger equations
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− ε2∆ϕ + α(x)ϕ = β(x)ψ + Fψ(x, ϕ, ψ)

− ε2∆ψ + α(x)ψ = β(x)ϕ + Fϕ(x, ϕ, ψ)

(ϕ,ψ) ∈ H1(RN ,R2)

(1.1)ε

where N ≥ 1, α and β are continuous real functions on RN , and F : RN × R2 → R is
of class C1.

Set
J =

(
0 1
1 0

)
,

w = (ϕ,ψ) or w =
(

ϕ

ψ

)
for w ∈ R2

and
F̃ (x,w) =

1
2
β(x)|w|2 + F (x,w),

the system (1.1)ε can be rewritten in the vector form

−ε2∆w + α(x)w = J F̃w(x,w), w ∈ H1(RN ,R2) (1.2)ε

This equation arises in the study of the standing wave solutions of the nonlinear
Schrödinger system

i~
∂φ

∂t
= − ~

2

2m
∆φ + γ(x)φ− J f(x, |φ|)φ. (1.3)

A standing wave solution of (1.3) is a solution of the form φ(x, t) = w(x)e−
iEt
~ . It is clear

that φ(x, t) solves (1.3) if and only if w(x) solves (1.2)ε with α(x) = γ(x)−E, ε2 = ~2
2m

and F̃w(x,w) = f(x, |w|)w. (1.2)ε can be also viewed as the equation for steady state
solutions of diffusion systems (see, for example, [1]).

There are many works devoted to studying the semiclassical solutions of single per-
turbed Schrödinger equations, see [2-14] and references therein. There are also papers
devoted to investigating unperturbed (i.e., ε = 1) elliptic systems, see [5, 15, 16]

In this paper,we assume that continuous functions α(x) and β(x) satisfy the follow-
ing condition

(A0) |β(x)| ≤ α(x) for all x ∈ RN , α(x0) = β(x0) for some x0, and there is b > 0 such
that the set {x ∈ RN : α(x)− |β(x)| < b} has finite Lebesgue measure.

Concerning the nonlinearities we will study two cases: subcritical and critical su-
perlinearities.

We first consider the subcritical problem. To unify the notations,for the subcritical
case,we use G(x,w) instead of F (x,w), and write the equation as:





− ε2∆ϕ + α(x)ϕ− β(x)ψ = Gψ(x,w)

− ε2∆ψ + α(x)ψ − β(x)ϕ = Gϕ(x,w)

w = (ϕ,ψ) ∈ H1(RN ,R2)

(P)ε


