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Abstract This paper deals with the very weak solutions of A-harmonic equation

divA(x,5u(x)) = 0 (∗)

where the operator A satisfies the monotonicity inequality, the controllable growth con-
dition and the homogeneity condition. The extremum principle for very weak solutions
of A-harmonic equation is derived by using the stability result of Iwaniec-Hodge de-
composition: There exists an integrable exponent
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such that if u(x) ∈ W 1,r(Ω) is a very weak solution of the A-harmonic equation (∗), and
m ≤ u(x) ≤ M on ∂Ω in the Sobolev sense, then m ≤ u(x) ≤ M almost everywhere in
Ω, provided that r > r1. As a corollary, we prove that the 0-Dirichlet boundary value
problem {

divA(x,5u(x)) = 0
u ∈ W 1,r

0 (Ω)

of the A-harmonic equation has only zero solution if r > r1.
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1. Introduction

Throughout this paper Ω will stands for a bounded regular domain in Rn, n ≥ 2.
By regular domain we understand any domain of finite measure for which the estimates
for the Iwaniec-Hodge decomposition in Lemma 1 and Lemma 2 are justified. See [1]
and [2]. A Lipschitz domain, for example, is regular. We shall examine the following
divergence type elliptic equation (also called A-harmonic equation)

divA(x,5u(x)) = 0 (1)

where A : Ω × Rn → Rn satisfies the usual measurability conditions (Carathéodory
conditions) and that for some 1 < p < ∞, the following conditions hold:
(i) the monotonicity inequality

〈A(x, ξ), ξ〉 ≥ α|ξ|p

(ii) the controllable growth condition

|A(x, ξ)| ≤ β|ξ|p−1

(iii) the homogeneity condition

A(x, λξ) = |λ|p−2λA(x, ξ)

for almost every x ∈ Ω and all ξ ∈ Rn, 0 < α ≤ β < ∞, λ ∈ R.

Remark The mapping A(x, ξ) = |ξ|p−2ξ, which generates the p-harmonic equation

div| 5 u(x)|p−2 5 u(x) = 0

satisfies the assumptions (i), (ii) and (iii).

Definition 1 A weak solution of (1) is defined as u ∈ W 1,p(Ω) satisfy
∫

Ω
〈A(x,5u(x)),5φ(x)〉dx = 0 (2)

for every φ ∈ C∞
0 (Ω).

The p-integrability of 5u(x) is not required for (2) to be of sense, but it is a natural
assumption because it is used in studying regularity of weak solutions. Actually, the
properties of weak solutions are often deduced by a suitable choice of test function in
(2), typically φ(x) = λ(x)u(x), with λ(x) a cut-off function. For example, the well-
known higher integrability of 5u(x) proved first in [3] is achieved by the technique of
reverse Hölder inequalities which are obtained by testing (2) with appropriate φ(x).
See also [4] and references therein.

In the paper [2], the notion of very weak solution is considered, relaxing the natural
integrability assumption.


