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Abstract In this paper we build a class of partial differential operators L having
the following property : if u is a meromorphic function in Cn and Lu is a rational

function
A

q
, with q homogenous, then u is also a rational function.
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1. Introduction

On M(Cn), the space of meromorphic functions on Cn, we consider the operator

L : M(Cn) →M(Cn)

u →
m∑

|i|=0

ai∂
iu

in which ∂i =
∂|i|

∂xi1
1 ....∂xin

n

, i = (i1, ..., in),| i |= i1+...+in, and ai ∈ C[x1, ..., xn]. We de-

note by Ωn the space {A

q
/ A ∈ C[x1, ..., xn], q ∈ C[x1, ..., xn]\ {0} and q homogeneous},

here the operator L is called regular if it satisfies the following property : if Lu belongs
to Ωn for some u in M(Cn), then u belongs to Ωn.

The aim of this article is to blued a class of regular partial differential operators,
with any order m. Acting in M(Cn), we present an algebraic method essentially based
on Chow’s lemma (see [1]), and some particular properties of the classical Euler’s (cited
below) differential operator E.

This work is composed of two parts, the first part, more technical, is devoted to
prove that P (E) is regular, where P is an arbitrary polynomial in C[x]\ {0}; in the
second part we will try to express P (E) in more explicit form.
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Besides the main result it presents, this work may be considered as illustrating, in
some particular cases, the use of the algebraic methods to study the partial differential
operators.

Notations :

E =
n∑

i=1

xi
∂

∂xi
is the classical Euler’s differential operator.

xi = xi1
1 xi2

2 ....xin
n ,

Ci
|i| =

| i |!
i1!i2!...in!

.

Pn(C) is the projective space.

2. The Fundamental Theorem

Theorem 1 Let b0, b1, b2..., bm, be m + 1 complex numbers not all equal to zero.

The differential operator
m∑

|i|=0

ai ∂i is regular, provided that ai = b|i| Ci
|i| xi, for all i,

| i |≤ m.

To prove the fundamental theorem we need the following two lemmas :

Lemma 1 For any arbitrary polynomial P ∈ C[x]\ {0}, the differential operator
P (E) is regular.

Proof To do that, we need some preliminary remarks :

1. we know that C is algebraically closed then : P (E) = a(E− r1)...(E− rm) where
ri are the roots of P (x) counted with their multiplicities and a ∈ C∗.

2. if each (E − ri) is regular, then P (E) is regular.

3. we see that : E(xi1
1 xi2

2 ....xin
n ) = (i1 + i2 + ... + in)xi1

1 xi2
2 ....xin

n . (∗)
4. let q ∈ C[x1, ..., xn]\ {0} homogeneous of degree λ et u ∈ M(Cn), from (∗) we

obtain E(qu) = λqu + qE(u). (∗∗ )

Let r ∈ C, now we will prove that (E − r) is regular. Let




E(u)− ru =
A

q
,

u ∈M(Cn)

where A ∈ C[x1, ..., xn] and q ∈ C[x1, ..., xn]−{0} homogeneous of degree λ. With (∗∗),
E(u)− ru =

A

q
implies that E(qu)− (λ + r)qu = A. Let v = qu and α = λ + r, then :

E(v)− αv = A. (1)

We distinguish three cases :


